
m-rz ... CarnegieMellon
".... Software Engineering Institute

Pin Component
Technology (V1 .0)
and Its C Interface

Scott Hissam

James Ivers
Daniel Plakosh

Kurt C. Wallnau

April2005

DISTRIBUTION STATEIMFMT A
Approved for Public Release

Distribution Unlimited

TECHNICAL NOTE
CMU/SEI-2005-TN-001

F.

Carnegie MeHon
"--- Software Engineering Institute

Pittsburgh, PA 15213-3890

Pin Component
Technology (V1.0)
and Its C Interface
CMU/SEI-2005-TN-001

Scott Hissam
James Ivers
Daniel Plakosh
Kurt C. Wallnau

April 2005

Predictable Assembly from Certifiable Components
Initiative

Unlimited distribution subject to the copyright.

20051223 024

This work is sponsored by the U.S. Department of Deferise.

The Software Engineering Institute is a federally funded research and development center sponsored by the
U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIV-
ITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproduc-
tions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document
for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web
site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract .. v

1 Introduction ... 1

2 Overview of Pin 3
2.1 Major Design Objectives 3
2.2 Overall Structure ... 3

2.3 Com ponents .. 6

2.4 Assem blies ... 8
2.5 Runtime Environment 9

3 Current W ork ... 11

4 Summary ... 13

Appendix A Pin's C API ... 15
A.1 Data Structures .. 15
A.2 User Code API .. 38
A.3 Container API ... 48
A.4 Component API ... 61

Appendix B Example ... 97
B.1 A Simple Assembly ... 97
B.2 Component Bufferjl Implementation (Generated) 101
B.3 Controller Implementation (Generated) 110

References .. 115

CMU/SEI-2005-TN-001

ii OMU/SEI-2005-TN-OO1

List of Figures

Figure 1: Major Structure of the Pin Component Technology 5

Figure 2: Pin Component and Container Contracts 6

Figure 3: The Logical Structure of a Pin Component: Pins and Reactions 7

Figure 4: The Assembly Controller Life Cycle 9

Figure 5: Pin V1.0 Runtime Environment 10

Figure 6: Pin Runtime Environment and the Pin Kernel 11

Figure 7: A Simple Assembly Specification 98

Figure 8: Statechart for Buffer_1 Reaction 99

CMU/SEI-2005-TN-O01 i

iv OMU/SEI-2005-TN-OO1

Abstract

Pin is a basic, simple component technology suitable for building embedded software applica-
tions. Pin implements the container idiom for software components. Containers provide a pre-

fabricated "shell" in which custom code executes and through which all interactions between

custom code and its external environment are mediated. Pin is a component technology for
pure assembly-systems are assembled by selecting components and connecting their inter-
faces (which are composed of communication channels called pins).

This report describes the main concepts of Pin and documents the C-language interface to Pin

VI.O.

CMU/SEI-2005-TN-O01 v

vi CMU/SEI-2005-TN-OO1

1 Introduction

A component technology comprises a component model and a runtime environment [Bach-
mann 00]. The component model defines the logical and implementation structure of compo-
nents and applications constructed from components, and defines rules for how components
may interact with one another and how they share resources. The runtime environment
enforces these rules of interaction and provides basic services for resource sharing, communi-
cation, scheduling, and the like.

The Pin component technology is based on an earlier component technology developed by the
Carnegie Mellon® 1 Software Engineering Institute (SEI) for the Environmental Protection
Agency (EPA) [Plakosh 99]. Pin has since been further developed for use in prediction-
enabled component technologies (PECTs) [Wallnau 03b]. Pin is a basic, simple component
technology. A component technology for the class of systems we are targeting--embedded
time- and safety-critical systems-should be small with an implementation that is (relatively)
transparent; in fact, a large and opaque component technology would be counterproductive for
this class of applications. There have been several generations of Pin implementations, and we
expect more generations to follow.

About This Report
The objective of this report is to describe the logical structure of the Pin component technol-
ogy and to document the application programming interface (API) for a version of Pin used in
PECTs for substation automation [Hissam 03] and industrial robotics [Hissam 04a]. This
report does not intend to propose a standard interface to Pin or any other component technol-
ogy. In particular, we expect this API to undergo changes, some of which are already in devel-
opment.

The intended audience for this report is the practitioner who is interested in understanding or
developing software component technologies for embedded applications. Although this report
does not give specific guidance on how to develop such a component technology, it does doc-
ument a component technology that has been useful in nontrivial settings. Further insight into
the design of Pin is provided in reports on the construction and composition language (CCL)
[Ivers 02], [Wallnau 03a]; CCL is an architecture description language in the "component and
connector" style that has been further specialized to work with the Pin component technology.

1. Carnegie Mellon is registered in U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2005-TN-001 1

The logical structure of Pin is described in Section 2. Our current work on Pin is described in
Section 3. Appendix A describes the Pin application programming interface (API), while

Appendix B provides a simple but illustrative example Pin application.

2 CMU/SEI-2005-TN-O01

2 Overview of Pin

2.1 Major Design Objectives
The design of Pin is governed by five overall design objectives that transcend requirements
imposed by particular applications and that will continue to govern the evolution of Pin. In
brief, Pin should

1. have a simple programming model and an execution model that supports the semantics of
UML statecharts

2. provide various ways to enforce extrinsic (to Pin) design and implementation constraints

3. introduce only the most basic features needed for building predictable embedded software

4. be adaptable to the needs of new applications and platforms

5. be freely distributable

The first objective is important for reasons of usability but is even more important for the pur-
pose of automation. In particular, a simple programming model makes automated code gener-
ation straightforward and makes the code generators themselves relatively immune from
changes to the Pin implementation. Further, specifications of component behavior, and the for-
mal basis for their analyses, can build on a widely available specification language, UML. The
second objective provides the flexibility needed to integrate new reasoning frameworks [Bass
05] into Pin-based PECTs; new reasoning frameworks may have assumptions that we wish to
preserve as invariants in systems built using Pin. The third objective appeals to the benefits of
parsimony: the simpler the implementation, the less chance it will introduce unanticipated
runtime effects. The fourth objective recognizes that the needs of a broader range of applica-
tions and platforms can be supported without compromising a simple programming model by

identifying key variation points, such as interaction mechanisms and scheduling policies. The
fifth objective reflects our ultimate desire to make the results of our work widely available to
practitioners, students, and researchers.

2.2 Overall Structure
Pin implements features of component technology that are frequently encountered in research
prototypes as well as commercial products:

CMU/SEI-2005-TN-O01 3

Pin implements the container idiom for software components. Containers provide prefab-
ricated "shells" in which custom code executes. All interactions between the custom code

and its external environment are mediated by the container, which may impose container-

type-specific coordination policies. A component is a container and its custom code.

Pin components are fully encapsulated. The container ensures that custom code can inter-
act with its environment only through container-mediated interfaces. While full encapsula-

tion "feels" restrictive to developers accustomed to unfettered access to the runtime
environment, the results are systems with fewer hidden component dependencies and
fewer changes for unanticipated component interactions.

Components are independently deployable binary implementations with explicit context
dependencies (a widely accepted starting point, popularized by Szyperski [Szyperski 02]).

Each Pin component is implemented as a distributable dynamic link library (DLL). Since

components are fully encapsulated, all environmental dependencies (on the runtime envi-
ronment or other components) are fully explicit.

Pin supports a model of pure assembly. Applications are constructed by connecting com-
ponents using a repertoire of connectors. Each connector may impose coordination poli-

cies beyond those provided by containers; for example, queuing policies on message
buffers. Assembly is "pure" because it is declarative; point-to-point custom interaction
code (a.k.a. "glue" code) is not permitted. 2

A component runtime environment provides services and enforces component interaction
policies. Services include access to the underlying platform; for example, timers, inter-
rupts, and input devices. Interaction policies governing shared resources, such as process
scheduling and intercomponent communication, are also provided by the runtime. Lastly,

the runtime provides a portability layer for components and their assemblies.

The overall logical structure of Pin is depicted in Figure 1.

2. The effects of custom glue code can be simulated, of course, by encapsulating it as a Pin component.

4 CMU/SEI-2005-TN-O01

certified properties
At (analytic interface)

connector

, - .prefabricated con-sink pins ••
tainer

custom code
source pins

life-cycle control

component runtime

•--native operating

system or hardware

Figure 1: Major Structure of the Pin Component Technology

Pin V1.0 has a number of limitations. Some are "principled restrictions" that reflect our under-
lying design philosophy, as well as the special considerations of our intended application
domain (embedded, safety- and performance-critical software). Other limitations arise only
from expediency and will likely be relaxed in future implementations. It is not always clear
whether a limitation is a principled restriction or an expediency, and the interplay of design
objectives 3 and 4 almost requires a flexible boundary between those two things.

Without prejudice to classification, the following summarizes the main limitations of Pin
V1.0:

"* Assembly topologies are fixed: we assume a closed world with static configurations.

"* Distributed and hierarchical assembly (i.e., assemblies of assemblies) is not supported.
* Each component reaction (see Section 2.3) has a thread of control; the notion of

unthreaded reactions (as outlined by Ivers, Sinha, and Wallnau [Ivers 02]) is not sup-
ported.

* Message sizes for intercomponent communication are fixed, and queue lengths for con-
nectors are fixed (but statically configurable).

"* Only two types of connectors are supported-for synchronous and asynchronous interac-
tion (although different connector implementations can be statically configured).

"* Only one type of container is provided (although more are currently under development
for the next version of Pin).

CMU/SEI-2005-TN-O01 5

2.3 Components
A Pin component consists of two parts: (1) a user-supplied (custom) function and (2) the Pin-
supplied (prefabricated) container function. The interface structure of a Pin component is dis-

played in Figure 2.

User-supplied code must conform to an interface contract defined by the container ("user code
API" in Figure 2); the container uses this interface to invoke (via the "user code plug-in") user-
supplied code in response to requests from the Pin runtime environment or from other compo-
nents. Conversely, the container provides an interface ("container API") that custom code uses
to requests service from the runtime environment or from other components. The container
also presents a single interface to the environment ("component API"), which conforms to an

environment-defined plug-in interface (not depicted). The container provides two additional
plug-in interfaces ("directory server plug-in" and "IPC plug-in") 3 to make it possible to deploy
components to different runtime environments, possibly having different intercomponent (or
interprocess) communication mechanisms. Pin components are packaged and deployed as

dynamic link libraries (DLLs).

component DLL '----------

Custom

user code API
S(see A.2)

user code plug-in

Container

container API
(see A.3) -- - - - - - - - component API

(see A.4)

directory server plug-in IPC plug-in

Figure 2: Pin Component and Container Contracts

The user code API and container API are quite simple, each defining fewer than ten opera-
tions. The user code API defines operations for creating, destroying, and initializing runtime
instances of the component. The container API provides operations for sending requests for

3. IPC stands for interprocess communication.

6 CMU/SEI-2005-TN-O01

service to the environment. The simplicity of these interfaces reflects our concern to make the
programming model for Pin as simple as possible.

In practice, the isolation of the custom code from its environment is not as complete as
depicted in Figure 2; there are inevitable dependencies on standard runtime libraries. These
dependencies could be problematic if external libraries violate reasoning framework assump-
tions. For example, an external library might introduce a source of unbounded priority inver-

sion, which in turn would invalidate the predictions of a performance theory. There are a
variety of ways to enforce strict isolation. (This is a topic of ongoing SEI research.)

The logical structure of a Pin component (in particular, the custom code part of a Pin compo-
nent) is depicted in Figure 3. Wallnau and Ivers provide a more detailed description of the con-

cepts [Wallnau 03a].

Sink pins Source pins
------------------------ *

Reaction_1 thread\ slI

. MsgHndlr(Msg,Snk) \ rlS/ /
if (Snk==sl)

SendMsg(rl, x);
s2else if (Snk==s2) >> r2

SendMsg(r2, y);

TimeoutHndlr() Reactions

// do something

I I
s3 I

r3

-------------------------iI •I

Figure 3: The Logical Structure of a Pin Component: Pins and Reactions

The custom code of a Pin component is organized as a set of one or more reactions. The con-
tainer creates a thread for each reaction. 4 This thread waits for the arrival of stimulus on a sink

4. The "unthreaded reaction" feature of CCL was not implemented in Pin V1.0.

CMU/SEI-2005-TN-001 7

pin; stimulus is FIFO queued. On receipt of stimulus, user code is executed; when this pro-
cessing is complete, control is returned to the container, which then checks for further stimu-
lus, ad infinitum.

Each reaction accepts stimuli from one or more sink pins and produces responses on zero or
more source pins. Each sink pin provides stimulus to at most one reaction; each source pin is
used by at least one reaction. Pins support synchronous and asynchronous interaction. Syn-
chronous interaction has the familiar procedure-call semantics (although it is implemented
using a messaging system), while asynchronous interaction has the familiar event-based
semantics.

2.4 Assemblies
Component instances receive stimulus through sink pins and respond through source pins;
enabling interaction among component instances requires that we connect a source pin of one

component instance to the sink pin of another. An assembly of components consists of a static
topological arrangement of component instances.

Pin V1.0 does not explicitly support the notion of assembly. In particular, there is no notion of
assembly container (although this will change in a future release). Instead, we construct
assemblies implicitly as a main (top-level) executable program that manages the component
and (implicit) assembly life cycle. Typically, assembly programs (also called assembly "con-

trollers" in the Pin vernacular) are generated automatically from CCL specifications. The life
cycle of an assembly controller is shown in Figure 4.

8 CMU/SEI-2005-TN-O01

Start Pin CnetRstAsml
Interface Components Pirt

Load Set Assembly D o
CompnentPriority to Cs ompnn

DLLs RTMAX Instances

Create Start Unload
Component Component Components
Instances Instances C n

Set Reaction Wait for End StopPin
Properties Event Interface

SConfigure "•F stop "

Component Component
•_Instances / _Instances _

Figure 4: The Assembly Controller Life Cycle

There is no intrinsic reason why component instances in different controllers can't be con-
nected (indeed, we use a directory server to look up component interface details, and the con-
nector mechanisms supported by the Pin runtime are UDP based). However, we will not

consider Pin as supporting distributed assembly (or uniprocessor hierarchical assembly) until

such concepts are explicitly supported via assembly containers or their equivalents.

2.5 Runtime Environment
As discussed in earlier reports (e.g., in the work of Bachmann and colleagues [Bachmann 00]),

a component runtime environment plays a role with regard to component assemblies that is

analogous to the role operating systems play with regard to processes. The analogy is a strong

CMU/SEI-2005-TN-001 9

one, and, not surprisingly, the boundary between component runtime and operating system is

fuzzy and, to some extent, arbitrary.

The component runtime for Pin V1.0 is a pragmatic amalgamation of services needed to sup-
port prototypes built for electric grid substation automation [Hissam 03] and industrial robot
control [Hissam 04a]. Only the major elements of the Pin V 1.0 runtime are shown in Figure 5.

Directory Shared Distributed Utilities

Service Memory Event (timers,
malloc, etc.)

Service Queues

runtimeI ~Real-Time Extensions (commercial product)

Microsoft Windows NT

Figure 5: Pin V1.0 Runtime Environment

There are two layers of service in the runtime. The bottom layer provides real-time thread sup-
port and is implemented by a commercial product that provides these services as extensions 5

of the Microsoft Windows NT operating system. 6 On top of this bottom layer is (1) a directory
service that is used by the assembly controller to 6onnect components and (2) a variety of
other services used by components and assembly controllers.

This report does not document the programming interfaces to the Pin V 1.0 runtime environ-
ment; as discussed in the next section, that part of the Pin component technology is being
extensively reworked.

5. For more information, go to http://www.vci.com/embeddedlproducts.aspx?ID=70.

6. When referring to Windows NT, we actually mean the Windows NT, Windows 2000, and Windows XP family of operating
systems based on the Win32 API.

10 CMU/SEI-2005-TN-001

3 Current Work

The version of Pin described in this report has a significant dependency on a commercial soft-
ware 7 that supports the development of real-time applications on Microsoft Windows NT.

While this product was adequate for our immediate purpose and consistent with the assump-

tions of the XABA performance theory [Hissam 03], we could not develop performance reason-
ing frameworks that exploit alternative scheduling disciplines, such as earliest deadline first
(EDF). Beyond this restriction, the dependency on a commercial product limits our options for
distributing Pin to clients or as an open source product.

For these (and other) reasons, we are currently rehosting Pin to our own virtual operating sys-
tems layer, called the Pin Kernel Services. This layer is currently implemented on Windows

NT and Windows CE, but it can, in principle, be rehosted to any Unix variant8 as well as to
"bare" hardware. The major elements of the Pin kernel are shown in Figure 6.

Pin Component Model Services

utilities Pin Kernel Services

Mauoc OrtbMOue lNtrk S P m ue uem
Prinff JL L LPin kernel
HashTable i

-TOSError [rd~ gr Sig Process En tClock Iit s

Portability API

f jOS-Specific Implementation

Figure 6: Pin Runtime Environment and the Pin Kernel

Revisions are being made to the Pin component model that will influence the structure of the

Pin Component Model Services, shown in undifferentiated form in Figure 6. The two most
significant areas of revision are in the treatment of event semantics and the support for distrib-

uted assemblies.

7. For more information, go to http://www.vci.com/embedded/products.aspx?ID=70.

8. In fact, the code base for our virtual operating system was initially developed as a prototype of POSIX real-time threads.

CMU/SEI-2005-TN-O01 11

Pin event semantics are being revised to more directly reflect UML statechart semantics. In
particular, a range of UML event classes will be supported by Pin, including (in addition to
"pin" events) UML change and time events. It is important to note that the UML standard

deliberately leaves semantic aspects of statecharts undefined, allowing some implementation
latitude for UMIL tool vendors. We have selected a consistent semantics for statecharts within

the space of allowed variation.

Pin V1.0 does not support distributed assemblies. Although we could (and did) handcraft solu-
tions to permit components in one assembly, executing on one CPU, to communicate with

components in another assembly on another CPU, these solutions were ad hoc and not
reflected in the semantics of CCL. We are currently investigating several alternative
approaches and will report on our progress in a future technical note.

12 CMU/SEI-2005-TN-O01

4 Summary

Pin is a basic, simple component technology suitable for building embedded software applica-
tions. Pin implements the container idiom for software components. Containers provide a pre-

fabricated "shell" in which custom code executes and through which all interactions between
custom code and its external environment are mediated. Pin is a component technology for
pure assembly (systems are assembled by selecting components and connecting their inter-
faces, which are composed of communication channels called pins) and has been used as a
foundation for our work on PECTs.

This report describes the main concepts of Pin and documents the C-language interface to Pin
V1.0. It also provides insight into some of the changes we are making currently to improve
Pin. Table 1 summarizes those changes.

Table 1: Summary of Planned Improvements to Pin

Features Pin V1.0 Future Versions of Pin

Supported operating Windows NT Windows NT, Windows CE, and
systems potentially Unix variants

Real-time support Provided by commercial product Provided by Pin kernel
(RTX)

Extensibility None provided Pluggable schedulers and com-
munication mechanisms

Distribution Assemblies restricted to a single Support for distributed assem-
processor blies

Life cycle The assembly is the controller, Provide a separate controller,
requiring runtime startup and allowing dynamic loading and
shutdown for each assembly exe- unloading of assemblies across
cution. network boundaries

Component stimulus Events representing communica- Additional event types intro-
tions among components are the duced reflecting UMIL semantics
only form of stimulus. for time and change events

Measurement support Support for single processor Will provide a distributed mea-
measurement. surement infrastructure

CMU/SEI-2005-TN-O01 13

14 CMU/SEI-2005-TN-OO1

Appendix A Pin's C API

A.1 Data Structures
The following are commonly used data types and structures supporting many of the compo-
nent-supplied functions and Pin runtime support functions. Developers of assembly controllers
will also refer to these functions.

IPCMSG

Synopsis

#include <ComponentSpec.h>
#define IPCMAXMSGSIZE 1536

typedef struct
{

IPC_HEADER header;
char data[IPCMAXMSGSIZE - sizeof (IPCHEADER)];

} IPCMSG;

Description

IPC._MSG is the structure used in all component interactions to send and receive messages,
where

header (reserved) used by the Pin runtime to dispatch

messages. Elements within this portion of the
structure should be considered opaque.

data buffer used to store the message being dis-
patched

CMU/SEI-2005-TN-O01 15

See Also

SendOutSourcePino, SendOutSourcePinWait(), SendReply()

Example
IPC_..MSG MessageOut;

SPrintf(MessageOut.data,"Clock From %s Pin %d",

Reaction->Instance->UniqueNane, 0);

Send~utSourcePin (Reaction, 0, &MessageOut,

(short) (Rt-strlen(MessageOut .data) +1),

IPCWAITFOREVER);

16 CMUISEI-2005-TN-OO1

TComnnonAnswer

Synopsis

#include <ComponentSpec.h>
typedef struct
{

IPC_MSG *MessageReply;
I TCommonAnswer;

Description
TCommonAnswer is the structure used to exchange data with the callback associated with a
synchronous reply on a synchronous pin, as with SendOutSourcePinWait (). The call-
back can obtain the reply from within this data structure, where

MessageReply message reply from the synchronous pin interac-
tion

See Also

IPC_MSG, SendOutSourcePinWaito, SendReplyo, TCommonHandler()

Example

TCommonAnswer *answer= (TCommonAnswer*)Data;
RtPrintf("Instance %s Pin %d Received %s\n",

Reaction->Instance->UniqueName, 2,
answer->MessageReply->data);

CMU/SEI-2005-TN-O01 17

TCommonMsg

Synopsis

#include <ComponentSpec.h>
typedef struct
{

IPC_MSG *MessageIn;

short BytesIn;
short src_id;
short cmd;

short msgtype;
short userdef;

} TCommonMsg;

Description

TCommonMsg is the structure used to exchange data with common handlers when passing
PINMSG (for instance, a reaction handler which is of type TCommonHandler () and
TReason is PINMSG), where

MessageIn message being set for a given pin interaction

BytesIn size in bytes of the data portion of MessageIn

srcid source pin from which the message was sent.

cmd sink pin upon which the message was received

msg-type user-defined field

userdef user-defined field

See Also

IPCMSG, TCommonHandler), SendOutSourcePin (,
SendOutSourcePinWait ().

18 CMU/SEI-2005-TN-O01

Example

BOOL Reaction_1_Handler

(TReactions *Reaction, TReason Reason, void *Data)

if (Reason==PINMSG)

TCommxonMsg *msg=(TCommopiMsg *)Data;

RtPrintf("R1 %s Pin %d Received Message: %s\n",

Reaction->Instance->UniqueName,

insg->cmd, msg->Messageln->data);

CMU/SEI-2005-TN-OO1 19

TCommonTimeOut

Synopsis

#include <ComponentSpec.h>
typedef struct

{
long LastTimeout;
long NextTimeout ;

I TCommonTimeOut;

Description

TCommonTimeOut is the structure used to exchange timeout information with common han-
dlers when passing TIMEOUT (for instance, a reaction handler which is of type

TCommonHandler () and TReason is TIMEOUT), where

Las tTimeout last timeout value (in milliseconds) that expired,
thereby causing the invocation of the reaction
handler

NextTimeout new timeout value (in milliseconds) to use upon
return from the reaction for the next timeout. Set-
ting NextTimeout to zero (0) will disable all

future timeouts.

See Also

TCommonHandler ()

20 CMU/SEI-2005-TN-001

Example

BOOL Reaction_1_Handler

(TReactions *Reaction, TReason Reason, void * Data)

if (Reason==TIMEOUT)

TCommonTiineOut *to= (TCommonTimeOut *) Data;

RtPrintf ("Reaction timeout at %ld\n", to->LastTimeout);

to->NextTimeout =to->LastTimeout + 100; IInew next timeout

CMU/SEI-2005-TN-OO1 21

TCoummonTmrEvent

Synopsis

#include <ComponentSpec.h>
typedef struct
{

REACTION_TIMERHANDLE ReationTimerHandle;
DWORD dwUser;

DWORD NextDelay;
} TCommonTmrEvent;

Description

TCommonTmrEvent is the structure used to exchange timer information with common han-

dlers when passing TMR (for instance, a reaction handler which is of type

TCommonHandler () and TReason is TMR), where

React ionTimerHandle the system handle to the common handler just
invoked. This handle is useful in destroying the

handler associated with a timer.

dwUs er user-defined field

NextDelay new timer value (in milliseconds) to use upon
return from the reaction for the next timer. Set-
ting NextDelay to zero (0) will cause the timer

to expire immediately and TCommonHan-
dler () to be invoked. Setting NextDelay to
INFINITE will prevent the timer from expiring

under any conditions.

See Also

TCommonHandler (, CreateReactionTimer ()

22 CMU/SEI-2005-TN-O01

Example

BOOL Reaction_1_Handler

(TReactions *Reaction, TReason Reason, void *Data)

if (Reason==TMR)

TCommonTmrEvent * tmrevt= (TCommonTmrEvent *) Data;

Time+=5 00;

RtPrintf("ReactionHandler Instance %s Reaction %d\n",

Reaction->Instance->UniqueName, tmrevt->dwUser);

tmrevt->NextDelay=Time

CMU/SEI-2005-TN-OO1 23

TComponentInfo

Synopsis

#include <ComponentSpec.h>
typedef struct
{

char *Name;
unsigned int NumSourcePins;
unsigned int NumSinkPins;
unsigned int NumReactions;
TComponentInfo;

Description

TComponentInfo consists of general, structural information about a component to include

its name, number of source pins, and number of sink pins, and the total number of reactions it

supports, where

Name character string constant that is null terminated
and identifies the name of the component

NumSourcePins non-negative integer value indicating the total
number of source pins

NumSinkPins non-negative integer value indicating the total
number of sink pins

NumReactions non-negative integer value indicating the total
number of reactions

Example

TComponentInfo Component;Info= {
"DISTCLOCK105",

NUNSOURCE_PINS,
NUM_SINKPINS,
NUMREACTIONS,

2;

24 CMU/SEI-20O5-TN-O01

See Also

GetNumSourcePins 0, GetNumSinkPins 0, GetNumReactions 0.
GetSourcePinlnfo 0, GetSinkPinlnfoo , GetReactionInfoo(

CMU/SEI-2005-TN-OO1 25

TComponent Instance

Synopsis

#include <ComponentSpec.h>
typedef struct _TComponentInstance

struct _TPinComponent *Component;

char *UniqueName;

TSourcePins *SourcePins;

TReactions *Reactions;

void *InstanceData;
struct _TReactionTimer

*TimerHandlesIndexToPtr [MAXREACTIONTIMERHANDLES];

int
TimerHandlesFreeListNext [MAX_REACTION_TIMERHANDLES];

int TimerHandlesFreeList;
CRITICAL_SECTION TimerHandlesCriticalSection;

I TComponentInstance;

Description

TComponent Ins tance consists of general, structural information about an instance of a
component to include the instance's name and data specific to a single instance, where

Component handle to TPinComponent

Name character string constant that is null terminated
and identifies the unique name of the component
instance

SourcePins handle to the list of source pins

Reactions handle to the list of source pins

InstanceData handle to the list of source pins

TimerHandlesIndexToPtr reserved

TimerHandl esFreeLi s tNext reserved

26 CMU/SEI-2005-TN-O01

TiinerHandlesFreeList reserved

TimerHandlesCriticalSection reserved

See Also

ConfigureInstance 0. DeleteInstance 0. CreateInstance 0,
SourceAddSinkPino, StartInstance 0. StopInstance 0,
LoadComponento(

Example
TCoinponentlnstance *InstanceSimpleClockl;
if ((InstanceSiinpleClockl=Createlnstance

(PinSimpleClock, "clockl'1 ,

&SimpleClockComponentProperties [01,
sizeof (COMPONENT-SimpleClockARGS))) !=NULL)

RtPrintf("Instance clocki Created\n');

else
RtPrintf("Failed to Create Instance clockl\n");

OMU/SEI-2005-TN-OO1 27

TPinComponent

Synopsis

#include <ComponentSpec .h>

typedef struct _TPinComponent

HINSTANCE hLibModule;

T_ABB_IPC_Functions ABBIPCFunctions;

TPinDirServ PinDirServ;

TContoller Controller;

T_GetNumSinkPins __GetNumSinkPins;

Tý_GetNumSourcePins _GetNuinSourcePins;

T_GetNumReactions _GetNuxnReactions;

TGetReactionlnfo _GetReactionlnfo;

T_GetSourcePinInfo _-GetSourcePinInfo;

T_GetSinkPinlnfo _GetSinkPinlnfo;

T_CreateInstance _-CreateInstance;

TDeleteInstance _DeleteInstance;

T_SourceAddSinkPin _SourceAddSinkPin;

T_SetReactionPriority _SetReactionPriority;

T_ConfigureInstance _ConfigureInstance;

T_SetReactionQueueLength -SetReactionQueueLength;

T_SetReactionTimeOut _SetReactionTimeOut;

TStartInstance -StartInstance;

TStoplnstance -Stoplnstance;

TSetMeasureExecutionTime _SetMeasureExecutionTime;

I TPinComponent;

Description
TPinComponent is used as a system utility structure whose structure elements are all
reserved.

See Also

TComponentlnstance, ConfigureInstance 0, DeleteInstance 0,
CreateInstance 0. SourceAddSinkPino, StartInstance 0,
StopInstance 0, LoadComponento(

28 CMU/SEI-2005-TN-OO1

Example

TPinComponent *PinSimpleClock;

if ((PinSimpleClock=LoadComponent ("SimpleClock.dll"))==NULL)

RtPrintf("Failed to Load SiinpleClock\n");

ExitProcess(O);

else

RtPrintf("SimpleClock Load Successful\n");

CMU/SEI-2005-TN-OO1 29

TPinlnfoSink

Synopsis

#include <ComponentSpec.h>
typedef struct{

char *PinName;
char *PinType;

I TPinInfoSink;

Description

TPinInfoSink holds user-defined values for the name of the sink pin and the name of its

type, where

PinName character string constant that is null terminated

and identifies the name of the sink pin

PinType character string constant that is null terminated

and identifies the type of the sink pin

The semantic significance of the values is user defined.

See Also

SourceAddSinkPin ()

Example

TPinInfoSink SinkPins [NUNSINKPINS] =
{

{"Sporadic Server Request", "SS.request" I

3;

30 CMU/SEI-2OO5-TN-O01

TPinlnfoSource

Synopsis

#include <ComponentSpec. h>
typedef struct

{
char *Pnae

char *PinType;
I TPinInfoSource;

Description

TPinInfoSource holds user-defined values for the name of the source pin and the name of

its type, where

PinName character string constant that is null terminated
and identifies the name of the source pin

PinType character string constant that is null terminated

and identifies the type of the source pin

The semantic significance of the values is user defined.

See Also

SourceAddSinkPin ()

Example

TPinInfoSource SourcePins[NUJM_SOURCE_PINSI]=
{

{"Source Pin 0 (rO)", "TEST"),
{"Source Pin 1 (rl)"', "TEST"),

};

CMU/SEI-2005-TN-001 31

TReactions

Synopsis

#include <ComponentSpec.h>

typedef struct _TReactions
{

unsigned int ReactionIndex;
struct _TComponentInstance *Instance;

short QueueSize;

int Priority;
TThreadInfo ThreadInfo;

short IPC_SlotID;
BOOL Valid;

long TimeOut;
BOOL MeasureExecutionTime;

) TReactions;

Description
The TReac tions structure holds runtime information about an individual reaction and is

passed as an argument to TCommonHandler (), where

ReactionIndex non-negative integer representing the index of

the reaction in the
TReactionsInfo structure

Ins tance character string constant that is null terminated
and identifies the name of the reaction's compo-

nent instance

Queues i ze non-negative integer of the queue size for hold-
ing messages for the reaction

Priority non-negative integer denoting the reaction's pri-
ority

ThreadInfo reserved

IPCSlotID reserved

32 CMU/SEI-2005-TN-001

Valid reserved

TimeOut non-negative integer indicating the timeout for

the reaction that will generate a TIMEOUT mes-
sage should no other message type arrive

MeasureExecutionTime Boolean indicating whether (TRUE) or not

(FALSE) measurement events should be gener-

ated by the reaction

See Also

TCommonHandler(, TReactionInfo

Example

BOOL Reaction_1_Handler
(TReactions *Reaction, TReason Reason, void * Data)

{

if (Reason==PINMSG)
{
TCommonMsg *msg=(TCommonMsg *)Data;
RtPrintf("Rl %s Pin %d Received Message: %s\n",

Reaction->Instance->UniqueName,
msg->cmd, msg->MessageIn->data);

I

CMU/SEI-2005-TN-001 33

TReactionslnfo

Synopsis

#include <ComponentSpec.h>
typedef struct
(

unsigned int NumSourcePins;
unsigned int NumberOfSinkPins;

unsigned int *SourcePins;
unsigned int *SinkPins;
short DefaultQueueSize;
int DefaultPriority;

long DefaultTimeOut;
BOOL DefaultMeasureExecutionTime;

TCommonHandler Handler;

TCommonHandler TimeoutHandler;
I TReactionsInfo;

Description

The TReactions Info structure is initialized at compile time and accessed by the system to
acquire information about the handlers in the system and the associated source and sink pins
related to that handler, where

NumSourcePins non-negative integer indicating the number of
source pins associated with the handler

NumberOfSinkPins non-negative integer indicating the number of
sink pins associated with the handler

SourcePins list of source pins (whose number matches Num-
SourcePins) associated with the handler

SinkPins list of sink pins (whose number matches Num-
berOf SinkPins) associated with the handler

DefaultQueueSize non-zero integer indicating the size of the input
queue to the handler for inbound message inter-
actions

34 CMU/SEI-2005-TN-O01

DefaultPriority non-negative integer for the default priority for
the handler, used for scheduling

De faul tTimeOut non-negative integer for the default timeout to

use before invoking the handler after no mes-
sages have been received. A value of 0 disables

timeouts.

DefaultMeasureExecutionTime Boolean value of whether (TRUE) or not
(FALSE) measurement traces should be emitted
for pin interactions with this handler

Handler pointer to the normal message handler

TimeoutHandler pointer to the timeout handler (which can be the
same as the normal handler)

See Also

GetReactionInfo ()

Example

TReactionsInfo ReactionInfo [NUNREACTIONS]=
{

{

REACTIONS_0_NUN_SINKS,

REACTIONS_0_NUNSOURCE,

NULL,

Reactions_0_Source,

5,

10,

IPCWAITFOREVER,

FALSE,

Reaction_0_TimeoutHandler

3
1;

CMU/SEI-2005-TN-001 35

TReason

Synopsis

#include <ComponentSpec.h>
typedef enum
{

PINMSG,
TMR,
TIMEOUT,

ANSWER
I TReason;

Description

TReason is used to differentiate between messages passed to TCommonHandler (), where

PINMSG indicates a message conforming to

TCommoriMsg

TMR indicates a message conforming to

TCommonTmrEvent

TIMEOUT indicates a message conforming to
TCommonTimeOut

ANSWER indicates a message conforming to
TCommonAnswer

See Also

TCommonHandler (), SendReply), CreateReactionTimer (,
TReactionsInfo

36 CMU/SEI-2005-TN-O01

Example

BOOL Reaction_0_Handler

(TReactions *Reaction, TReason Reason, void *Data)

if (Reason==PINMSG)

IIHandle TCommoniMsg

else if (Reason==TMR)

IIHandle TCommonTmrEvent

else if (Reason==TIMEOUT)

//Handle TCornmonTimeOut

else if (Reason==ANSWER)

IIHandle TCoinmonAnswer

CMU/SEI-2005-TN-OO1 37

A.2 User Code API
Functions appearing in this section are functions that are required to be provided by the user-

supplied portion of the component. The container will invoke these functions as per the Pin

component life cycle.

CreateComponent Instance

Synopsis

#include <ComponentFuncs.h>
BOOL CreateComponentInstance(

void **Data,
void *State,
unsigned int SizeOfState

Description

CreateComponentInstance () is called when an instance of a component is to be cre-
ated. It is the first instance-specific call made by the Pin runtime. This function should create
all instance-specific data and state information relevant to an instance object. The data and
state information created are intended to be private to this instance. Any specific initialization

data and state information relevant to this component and instance are passed in the State
pointer. If this data and state are to persist for the lifetime of the instance created, heap mem-
ory allocation should be performed in this function, and references to that memory created can
be stored as callback in Data.

Component defined data in State is not guaranteed to persist after the call to
CreateComponent Instance () and must be saved prior to a return from this function.

Data non-null pointer provided by the Pin runtime and
used by an instance of a component to save
instance-specific data and state information. The
pointer set by

CreateComponentInstance () is saved in
the TReaction data structure element
TComponentInstance. InstanceData.

State If non-null, the value is a pointer provided by the
controller to data and state information intended

38 CMU/SEI-2005-TN-001

to be specific to the instance of a component that
is being created. A NULL value indicates that no

data or state information was passed.

SizeOfState If State is non-null, SizeOfState is a posi-
tive non-zero integer indicating the number of
bytes in memory of State.

Return Values
TRUE indicates that CreateComponentIn-

stance () was successfully able to create an
instance of a component

FALSE indicates that CreateComponentIn-

stance () failed to successfully create an
instance of a component

See Also

CreateInstance ()

Example

BOOL CreateComponentInstance(

void **Data, void *State, unsigned int SizeOfState)
{

if (Data==NULL) return(FALSE);

else *Data=NULL;

if (State != NULL) {
*Data =

RtAllocateLockedMemory (SizeOfState);

if (*Data == NULL)

return (FALSE);

Rt-memcpy

*Data, State, sizeof(SizeOfState));
I

return (TRUE);

3

CMU/SEI-2005-TN-001 39

DeleteComponentInstance

Synopsis

#include <ComponentFuncs .h>

BOOL DeleteComponentInstance(

void **Data

Description

DeleteComponentInstance () is called when an instance of a component is to be
deleted, and there are no further references to a component instance to be made. This is the last
instance-specific call made by the Pin runtime. This function should free all instance-specific

data and state information relevant to an instance object from the heap.

Data non-null pointer provided by the Pin runtime and

used to access instance-specific data and state
information

Return Values

TRUE indicates that DeleteComponentIn-

stance () was successfully able to destroy an
instance of a component

FALSE indicates that DeleteComponentIn-

stance () failed to successfully destroy an
instance of a component

See Also

" DeleteInstance ()

40 CMU/SEI-2005-TN-O01

Example
BOOL DeleteCoinponentlnstance (void **Data)

if (Data==NULL) return(FALSE);

else {
if (*Data) RtFreeLockedMemory (*Data);

*Data=NTJLL;

return (TRUE);

CMU/SEI-2005-TN-OO1 41

ReactionInitialize

Synopsis

#include <ComponentFuncs.h>

void ReactionInitialize

TReactions *Reaction,

int ReactionIndex

Description

ReactionInitialize () is called after an instance of a component is created and before

the component instance is to receive messages on sink pins. This function is called during the

component instance's startup phase and is invoked by StartInstance (). Any reaction-

specific actions that need to be completed before messages are received should be done here

(e.g., creating timers).

Reaction non-null pointer provided by the Pin runtime and

used by an instance's reaction to access instance-

and reaction-specific data and state information

ReactionIndex non-negative integer value indicating the index

of the reaction being initialized. This index is

determined by the total number of reactions and

the TReactionsInfo statically declared for

the component.

Return Values

None

See Also

StartInstance ()

42 CMU/SEI-2005-TN-001

Example

void ReactionInitialize

(TReactions *Reaction mnt ReactionIndex)

TUserData *Data;

Data= (TUserData *) Reaction->Instance->InstanceData;

if ((Data->Handle[Reactionlndexll=

CreateReact ionTiiner

(Reaction, ReactionTmrHandler, 12,500,

TRUE,Reactionlndex))== NULLINDEX

RtPrintf("Initialize Reaction Error\n");

else

RtPrintf("Initialize Reaction OK\n");

OMU/SEI-2005-TN-OO1 43

ReactionTerminating

Synopsis

#include <ComponentFuncs.h>
void ReactionTerminating

TReactions *Reaction,

int ReactionIndex

Description

ReactionTerminating () is called prior to terminating a component instance, indicating

that reactions handling messages on the sink pin should cease. This function is called during
the component instance's shutdown phase and is invoked by StopInstance (). Any reac-

tion-specific actions that need to be completed before terminating the component instance
should be done here (e.g., destroying timers).

Reaction non-null pointer provided by the Pin runtime and
used by an instance's reaction to access instance-
and reaction-specific data and state information

ReactionIndex non-negative integer value indicating the index

of the reaction being terminated. This index is
determined by the total number of reactions and
the TReactionsInfo statically declared for
the component.

Return Values

None

See Also

StopInstance ()

44 CMU/SEI-2005-TN-001

Example

void ReactionTerminating

(TReactions *Reaction mnt ReactionIndex)

TUserData *Data;

Data= (TUserData *) Reaction->Instance->InstanceData;

if (DestroyReactionTinlter

(Reaction,Data->Handle [ReactionIndex]) ==TRUE)

RtPrintf ("Terminating Reaction OK\n");
else

RtPrintf ("Terminating Reaction Failed\n");

CMU/SEI-2005-TN-OO1 45

TCommonHandler

Synopsis

#include <ComponentSpec.h>

typedef BOOL (*TCommonHandler)

struct _TReactions *Reaction,

TReason Reason,

void * Data

Description

TCommonHandler () is a function prototype and not a specific function to be provided by

the component developer. The Pin runtime will invoke specified handlers according to the data

structures created by the component developer, such as TReactionsInf o. Handler and

TReactionsInfo. TimeoutHandler, or provided as parameters to other functions (e.g.,

CreateReactionTimer (). Such handlers must conform to the type definition for this

function prototype.

Each handler is called with three things: (1) a pointer to a structure containing information

about the reaction, (2) the reason the handler was invoked, and (3) callback data and state

information for the specific instance of the component to which this handler belongs.

Reaction non-null pointer provided by the Pin runtime and

used by an instance's reaction to access instance-

and reaction-specific data and state information

Reason reason why TCommonHandler () was called:

PINMSG, TIMEOUT, TMR, or ANSWER

Data a non-null pointer provided by the Pin runtime

and used to access instance-specific data and
state information

Return Values

TRUE indicates to the Pin runtime that the handler

encountered no reportable errors

46 CMU/SEI-2005-TN-O01

FALSE indicates to the pin runtime that the handler
encountered an exception

See Also
TReactionlnfo, TReason, SendOutSourcePino, SendOutSourcePin-
Wait o, SendReplyo, CreateReactionTimero(

Example

BOOL Reaction_1_Handler

(TReactions *Reaction, TReason Reason, void * Data)

if (Reason==PINMSG)

RtPrintf("R1 %s Pin %d Received Message: %s\n",
Reaction->Instance.->UniqueNaxne,

msg->cmd, msg->Messageln->data);

else if (Reason==TMR)

RtPrintf("R1 Timer Expired.\n");

CMU/SEI-2005-TN-OO1 47

A.3 Container API

User-supplied component code is provided for the functions in this section to manage behavior

and interactions with other components and the Pin runtime.

CreateReactionTimer

Synopsis

#include <ComponentSpec.h>
REACTION_TIMERHANDLE CreateReactionTimer

TReactions *Reaction,
TCommonHandler Callback,
int Priority,

DWORD Delay,
BOOL Periodic,

DWORD dwUser

Description

CreateReactionTimer () will create a timer having a specified delay and priority that
will invoke a specific timer handler (i.e., callback). When a timer expires, a TMR message is

placed on the reaction queue for the specified timer handler.

Reaction non-null pointer indicating which instance's
reaction the timer should be assigned to

Callback non-null pointer indicating the TCommonHan-
dler () handler to call when the timer expires

Priority non-negative integer indicating the priority at
which the timer is to operate. The range is 0 >=

Priority <= 255.

Delay non-negative integer indicating the timer's delay
before expiring. A zero delay will cause the timer

to expire immediately (while at its assigned pri-

ority).

48 CMU/SEI-2005-TN-O01

Periodic If TRUE, the timer will continue to expire at the
given priority and rate (delay). If FALSE, the
timer will expire only once.

dwUser pointer to user-defined callback data. This
pointer will be provided to the callback when the

timer expires.

Return Values

A failure will result in a return value of NULLINDEX; otherwise the return value is a valid
REACTIONTIMERHANDLE.

Errors

A reaction can have at most MAXREACTIONTIMERHANDLES timer handles.

CreateReactionTimer () will fail with NULLINDEX if more than
MAXREACTIONTIMERHANDLES timer handlers are being created. Use
DestroyReactionTimer () to free up unused handles or handles that are no longer

needed.

See Also

DestroyReactionTimer ()

Example

void ReactionInitialize
(TReactions *Reaction, int ReactionIndex)

{
TUserData *Data;

Data= (TUserData *) Reaction->Instance->InstanceData;

if ((Data->Handle [ReactionIndex] =

CreateReact ionTimer
(Reaction, ReactionTmrHandler, 12, 500,

TRUE,ReactionIndex))== NULL_INDEX

RtPrintf("Initialize Reaction Error\n");

else
RtPrintf ("Initialize Reaction OK\n");

CMU/SEI-2005-TN-001 49

DestroyReactionTimer

Synopsis

#include <ComponentSpec. h>
BOOL DestroyReactionTimer(

TReactions *Reaction,
REACTIONTIMERHANDLE Handle

Description

DestroyReactionTimer () will destroy or otherwise remove a timer created with

CreateReact i onTimer (). The timer destroyed will no longer generate messages for the
specified reaction.

Reaction non-null pointer indicating from which
instance's reaction the timer should be destroyed

Handle handle to the specific timer to be destroyed. This
handle was previously returned by CreateRe-

actionTimer (.

Return Values

TRUE if the timer was destroyed successfully, FALSE otherwise.

Errors

Handle must have been returned by CreateReactionTimer () and is in the range of 0
< Handle <= MAXREACTIONTIMERHANDLES.

See Also

CreateReactionTimer ()

50 CMU/SEI-2005-TN-001

Example

void ReactionTerminating

(TReactions *Reaction mnt ReactionIndex)

TUserData *Data;

Data= (TUserData *) Reaction->Instance->InstanceData;

if (DestroyReactionTlimer

(Reaction, Data->Handle [ReactionIndex])==TRUE)
RtPrintf ("Terminating Reaction OK\n");

else

RtPrintf ("Terminating Reaction Failed\n");

OMU/SEI-2005-TN-OO1 51

NotifyController

Synopsis

#include <ComponentSpec. h>
int NotifyContoller (

TComponent Instance *Instance,
int code,
char *string

Description

NotifyController () is used by component instances to send the following to the con-

troller of another instance: (1) a user-defined message or (2) code and an optional character

string. This function is useful in communicating exception conditions to the controller, requir-

ing controller attention (such as shutdown).

Instance non-null pointer indicating which component

instance is performing the notification

code user-defined integer (optional) that is passed to

the controller and is application dependent

string user-defined string (optional) that is passed to the

controller and is application dependent

Return Values

SUCCESS non-null pointer indicating which component
instance is performing the notification

CONTROLLERNOTFOUND Either the shared memory segment for message

passing has not been initialized (via
StartPinInterface ()) or the queue for

delivering the message to the controller has been

deleted.

INVALIDINSTANCE An instance was passed as a null pointer.

INVALIDSTRING A string was passed as a null pointer.

52 CMU/SEI-2005-TN-O01

INVALIDINSTANCEUNIQUENAME The instance name was either of zero length (an
empty, but non-null string) or too long.

STRING_MESSAGETOOLONG The string was either of zero length (an empty,
but non-null string) or too long.

CONTROLLERQUEUE_FULL The queue for delivering message to the control-
ler is full.

CONTROLLERUNKNOWNERROR An error of the underlying IPC mechanism for

delivering messages has occurred for an
unknown reason.

Errors

Errors generated by this function and the conditions are described above under "Description."

See Also

WaitForNotifications ()

Example

BOOL Reaction_1_Handler
(TReactions *Reaction, TReason Reason, void * Data)

{

static DWORD Time=0;
if (Reason==PINMSG)
{

if (NotifyContoller (Reaction->Instance,
543212345,"It works")==SUCCESS)

RtPrintf("Done Notification Sent\n");
else

RtPrintf ("Notification Send Error\n");

I

CMU/SEI-2005-TN-001 53

SendOutSourcePin

Synopsis

#include <ComponentSpec.h>
BOOL SendOutSourcePin (

TReactions *Reaction,
unsigned int SourcePin,
IPC_MSG *MessageOut,

short MsgSize,

long Timeout

Description

SendOutSourcePin () is used to send out an asynchronous message via a component
instance's source (or stimulus) pin. SendOutSourcePin () will block long enough to
queue the message on the one or more queues of the connected, and interoperating, sink (or

receiving) pins.

Reaction non-null pointer indicating the reaction generat-
ing the message

SourcePin index of the source pin on which the message is

being generated

MessageOut message being sent

MsgSize size in bytes of Me ssageout

Timeout the length of time in milliseconds to wait for
delivering messages that would block (e.g., in the

case of a full queue). A timeout of
IPCWAITFOREVER will cause

SendOutSourcePin () to wait until the mes-
sage can be delivered to the queue of the destina-

tion sink pin.

54 CMU/SEI-2005-TN-O01

Return Values

TRUE SendOutSourcePin () was able to queue the
message for delivery on the destination sink
pin(s).

FALSE SendOutSourcePin () failed to queue the
message for delivery on the destination sink
pin(s).

Errors

SendOutSourcePinWait () will fail if the component instance does not have any source
pins or failed in the IPC code because of a timeout, message size error, invalid source pin ID,
or unrecoverable system error.

See Also

SendOutSourcePinWait ()

Example

BOOL Reaction_0_TimeoutHandler

(TReactions *Reaction, TReason Reason, void * Data)
{

if (Reason==TIMEOUT)
{

IPCMSG MessageOut;
TCommonTimeOut *to=(TCommonTimeOut *) Data;
SPrintf(MessageOut.data,"Clock From %s Pin %d",

Reaction->Instance->UniqueName, 0);
if (!SendOutSourcePin

(Reaction, 0, &MessageOut,
(short) (Rtstrlen(MessageOut.data)+1),
IPC_WAITFOREVER))

RtPrintf("SinkPin 1 Handler Send Error\n");
RtPrintf("Clock %s Sent Trigger \n",

Reaction->Instance->UniqueName);
to->NextTimeout=to->LastTimeout;

}

return (TRUE)

5

OMU/SEI-2005-TN-O01 55

SendOut:SourcePinWait

Synopsis

#include <ComponentSpec .h>
BOOL SendOutSourcePinWait

TReactions *Reaction,
unsigned int SourcePin,
IPC_MSG *MessageOut,

short MsgOutSize,

IPC_MSG *MessageIn,

short MsgInSize,

long Timeout,

TCommonHandler Callback

Description

SendOutSourcePinWait () is used to send a synchronous message out via a component
instance's source (or stimulus) pin. SendOutSourcePinWait () will block until the reac-
tion of the connected component instance's sink (or receiving) pin has issued a Sen-
dReply (). SendOutSourcePinWait () provides a callback mechanism to the

connected sink pin's reaction to reply to a synchronous message.

Reaction non-null pointer indicating the reaction generat-
ing the message

SourcePin index of the source pin on which the message is
being generated

MessageOut message being sent

MsgOutSize size in bytes of Messageout

Message In buffer to hold the response message

MsgInSize size in bytes of the buffer to hold the response
message

Timeout length of time in milliseconds to wait for deliver-

ing messages that would block (e.g., in the case

56 CMU/SEI-2005-TN-001

of a full queue). A timeout of

IPCWAITFOREVER will cause SendOut-
SourcePinWait () to wait until the message
can be delivered to the queue of the destination
sink pin.

Callback (optional) If non-null, the value is the TCom-
monHandler () to use as a callback for han-
dling the messages returned in MessageIn.

Return Values

TRUE indicates that SendOutSourcePinWait ()
was able to queue the message for delivery and

receive acknowledgement of the message's
receipt on the destination sink pin

FALSE indicates that SendOutSourcePinWait ()
failed to queue the message for delivery or

receive acknowledgement of the message's
receipt on the destination sink pin

Errors

SendOutSourcePinWait () will fail if the component instance does not have any source
pins or failed in the IPC code because of a timeout, message size error, invalid source pin ID,
or unrecoverable system error.

See Also
SendReply (, SendOutSourcePin ()

CMU/SEI-2005-TN-O01 57

Example

BOOL Reaction_1_Handler

(TReactions *Reaction,TReason Reason, void *Data)

static DWORD Time=O;

if (Reason==PINMSG)

IPCMSG MessageOut;

IPCMSG MessageReplyRecv;

TCommxonMsg *msg=(TCommorisg *) Data;

SPrintf (MessageOut.data,
"From %s Pin %d",Reaction->Instance->UniqueName,2);

if (!SendOutSourcePinWait (Reaction, 2,

&MessageOut, (short) (Rt~strlen(MessageOut.data)+1),

&Mes sageReplyRecv,

IPCMAXMSGSIZE - sizeof(IPC_ýHEADER),

IPCWAITFOREVER, SinkPin_2_AnswerCallback))

RtPrintf("SinkPin 2 Handler Send Error\n");

RtPrintf("H2 %s Pin %d Received Message: %s\n",

Reaction->Instance->UniqueName,

msg->cmd, msg->Messageln->data);

58 CMU/SEI-2005-TN-001

SendReply

Synopsis

#include <ComponentSpec.h>
BOOL SendReply

TReactions *Reaction,

short src_id,
IPC_MSG *MessageReply,

short MsgReplySize,

Description

SendReply () is used to send a reply to a received synchronous message via
SendOutSourcePinWai t (). Thereaction that initiated the synchronous message will not
unblock until a SendReply () is initiated from the reaction handling the sink pin to which

the synchronous message was sent.

Reaction non-null pointer indicating the reaction generat-
ing the reply message

srcid index of the sink pin from which the reply mes-

sage is being generated

MessageReply reply message being sent

MsgReplySize size in bytes of MessageReply

Return Values

TRUE indicates that SendReply () was able to queue

the reply message for delivery on the source pin
that initiated the message

FALSE indicates that SendReply () failed to queue

the reply message for delivery on the source pin
that initiated the message

CMU/SEI-2005-TN-001 59

Errors
SendReply ()will fail if the component instance does not have any sink pins or failed in the
IPC code because of a message size error, invalid sink pin id, or unrecoverable system error.

See Also
SendOutSourcePinWaito(

Example
BOOL Reaction 1 Handler

(TReactions *Reactjon,TReason Reason, void *Data)

static DWORD Time=O;

if (Reason==PINMSG)

IPCMSG MessageOut;

IPCMSG MessageReplyRecv;

IPCMSG MessageReply;

TCoinmonMsg *msg=(TCommjopi~sg *) Data;

SPrintf (MessageOut data,

"From %s Pin %d",Reaction->Instance->UniqueName,2);

if (I SendOutSourcePinWait (Reaction, 2,

&MessageOut, (short) (Rt~strlen(MessageOut.data)+1),

&MessageReplyRecv,

IPC_MAXMSGSIZE - sizeof(IPCHEADER),

IPC_ýWAITFOREVER, SinkPin_2_AnswerCallback))

RtPrintf("SinkPin 2 Handler Send Error\n");

RtPrintf("IH2 %s Pin %d Received Message: %s\n",

Reaction->Instance->Uniqu'eName,

msg->cmd,msg->Messageln->data);

if (msg->Messageln->header .msg-type== IPC_SENDWAIT)

SPrintf (MessageReply. data,

"Reply From %s Pin %d",Reaction->Instance->UniqueName,2);

SendReply (Reaction, msg->srcjid,

&MessageReply, (short) (Rt~strlen(MessageReply.data) +1));

60 CMU/SEI-2005-TN-OO1

A.4 Component API
These functions are used by assembly controllers to manage the life cycle of component

instances to perform a function specific to the assembly.

ConfigureInstance

Synopsis

#include <PinInterface.h>

BOOL ConfigureInstance (
TComponentInstance *Instance

Description

ConfigureInstance () is used to allow a newly created instance of a component to ini-
tialize and perform any necessary pre-startup configuration prior to StartInstance ().

Instance non-null pointer indicating which component
instance is to be configured

Return Values

TRUE indicates that ConfigureInstance () was
able to properly configure the component
instance and its reactions and sink and source
pins

FALSE indicates that ConfigureInstance () failed
to properly configure the component instance
and its reactions and sink and source pins

Errors

The component instance may fail to properly initialize under a number of conditions, includ-
ing failure to allocate necessary memory, an improperly specified number of sink or source
pins, or connect to necessary IPC slots.

CMU/SEI-2005-TN-001 61

See Also

CreateInstance 0. LoadComponent 0, SetReactionTimeOut 0,
SetReactionPriorityo, SetMeasureExecutionTime 0,
StartPinlnterfaceo(

Example
TCoinponentlnstance *InstanceSimpleClockl;

if (ConfigureInstance (InstanceSimpleClocki) ==FALSE)

RtPrintf

("ConfigureInstance Instance Simple Clocki FAILED \n");

62 CMU/SEI-2005-TN-OO1

CreateInstance

Synopsis

#include <PinInterface. h>

TComponentInstance* CreateInstance(

struct _TPinComponent *Component,
char *UniqueName,

void *State,
unsigned int SizeOfState

Description
CreateInstance () is used to create an instance of a loaded component library. The com-

ponent instance must be created with a unique name and canpass initialization data or state
information to the component as defined by the specific component specification. The passed
initialization data or state information need not persist for the duration of the component

instance's life cycle (it is the component instance's responsibility to save off this passed data).

Component non-null pointer to heap or stack memory where

CreateInstance () can store runtime-spe-
cific information about the newly created com-

ponent instance

UniqueName non-null, non-empty character string (null-termi-
nated) that is unique among all the other compo-
nent instances that have been or will be created

State If non-null, this value is a pointer provided by
the controller to data and state information that is
intended to be specific to the instance of a com-
ponent being created. If NULL, no data or state

information was passed.

SizeOfState If State is non-null, SizeOfState is a posi-
tive non-zero integer indicating the number of

bytes in memory of State.

CMU/SEI-2005-TN-O01 63

Return Values

TComponentInstance If successful, CreateIns tance () will return
a non-null pointer to an instance of a component.

NULL CreateInstance () will return a null pointer

if it fails to create an instance of a component.

Errors

The component may fail to create an instance under a number of conditions, including failure

to allocate necessary memory or improperly specified parameters (such as an invalid unique

name).

See Also

LoadComponent (, StartPinInterface ()

Example

TComponentInstance *InstanceSimpleClockl;

if ((InstanceSimpleClockl=CreateInstance
(PinSimpleClock, "clockl",

&SimpleClockComponentProperties [0],
sizeof (COMPONENT_SimpleClockARGS))) !=NULL)

{
RtPrintf("Instance clockl Created\n");

}
else

RtPrintf("Failed to Create Instance clockl\n");

64 CMU/SEI-2005-TN-O01

DeleteInstance

Synopsis

#include <PinInterface.h>
BOOL DeleteInstance (

TComponentInstance *Instance

Description

DeleteInstance () is used to destroy an instance of a component. Once a component

instance is destroyed, no further references to that instance are valid.

Instance non-null pointer returned by

CreateInstance () of the component
instance to be destroyed

Return Values

TRUE DeleteInstance () was able to properly

destroy the component instance and its reactions
and sink and source pins.

FALSE DeleteInstance () failed to properly

destroy the component instance and its. reactions
and sink and source pins.

Errors

The component instance will fail only under one condition-when passing a NULL pointer.

See Also

CreateInstance ()

Example

TComponentInstance *InstanceSimpleClockl;

if (InstanceSimpleClockl) DeleteInstance (InstanceSimpleClockl);

CMU/SEI-2005-TN-O01 65

GetNumReactions

Synopsis

#include <PinInterface.h>
unsigned int GetNumReactions (TPinComponent *Component);

Description

GetNumReactions () is used to read or obtain the total number of reactions supported by a

component.

Component non-null pointer for a component whose address

space was attached by LoadComponent ()

Return Values

int total number of reactions supported by the com-
ponent

Errors

The passing of an invalid pointer, or a pointer initialized to something other than that returned
by LoadComponent (), will fail.

See Also

LoadComponent ()

Example

TPinComponent *PinSimpleClock;
PinSimpleClock=LoadComponent ("SimpleClock.dll");

RtPrintf("Component has %d reactions\n",
GetNumReactions (PinSimpleClock));

66 CMU/SEI-2005-TN-001

GetNumSinkPins

Synopsis

#include <PinInterface.h>
unsigned int GetNumSinkPins (TPinComponent *Component);

Description

GetNumSinkPins () is used to read or obtain the total number of sink pins supported by a
component.

Component non-null pointer for a component whose address

space was attached by LoadComponent ()

Return Values

int total number of sink pins supported by the com-

ponent

Errors

The passing of an invalid pointer, or a pointer initialized to something other than that returned
by LoadComponent (), will fail.

See Also

LoadComponent ()

Example

TPinComponent *PinSimpleClock;
PinSimpleClock=LoadComponent ("SimpleClock.dll");
RtPrintf("Component has %d sink pins\n",

GetNumSinkPins(PinSimpleClock));

CMU/SEI-2005-TN-001 67

GetNumSourcePins

Synopsis

#include <PinInterface.h>
unsigned int GetNumSourcePins (TPinComponent *Component);

Description

GetNumSourcePins () is used to read or obtain the total number of source pins supported

by a component.

Component non-null pointer for a component whose address
space was attached by LoadComponent ()

Return Values

int total number of source pins supported by the

component

Errors

The passing of an invalid pointer, or a pointer initialized to something other than that returned
by LoadComponent (), will fail.

See Also

LoadComponent ()

Example

TPinComponent *PinSimpleClock;

PinSimpleClock=LoadComponent ("SimpleClock.dll");

RtPrintft("Component has %d sink pins\n",
GetNumSourcePins (PinSimpleClock));

68 CMU/SEI-2005-TN-001

GetReactionInfo

Synopsis

#include <PinInterface.h>
TReactionsinfo* GetReactionInfo

TPinComponent *Component;
unsigned int Reaction

Description

GetReactionInfo () is used to read or obtain the information about a specific reaction
handler for a component. Indices to reactions start at 0.

Component non-null pointer for a component whose address
space was attached by LoadComponent ()

Reaction non-negative integer, which is the index into
TReactionsInf o for the reaction information

to be retrieved

Return Values

TReactionsInfo GetReactionInfo () will return a non-null

pointer to the specified reaction information for a
component.

Errors
The function will fail if

"* the reaction index is less than 0 or greater than or equal to the number of reactions sup-
ported by the component

"* an invalid pointer, or a pointer initialized to something other than that returned by Load-
Component (), was passed

See Also

TReactionsInfo, CreateInstance ()

CMU/SEI-2005-TN-O01 69

Example

TPinComponent *PinSimpleClock;

TReactionslnfo *r;

PinSimpleClock=LoadComponent ("SimpleClock .dll");
r = GetReactionlnfo(PinSimpleClock, 0);

RtPrintf("Default timeout for reaction 0 is %d\n",

r->DefaultTimeOut);

70 CMU/SEI-2005-TN-OO1

GetSinkPinInfo

Synopsis

#include <PinInterface.h>
TPinInfoSink* GetSinkPinInfo

TPinComponent *Component;
unsigned int Num

Description

GetSinkPinlnfo () is used to read or obtain the information about a specific sink pin for a

component. Indices to sink pins start at 0.

Component non-null pointer for a component whose address
space was attached by LoadComponent ()

Num non-negative integer, which is the index into
TPinInfoSink for the sink pin information

needed to retrieve

Return Values

TPinInfoSink GetSinkPinInfo () will return a non-null

pointer to the specified sink pin information for a
component.

Errors

The function will fail if

"• the sink pin index is less than 0 or greater than or equal to the number of sink pins sup-
ported by the component

"* an invalid pointer, or a pointer initialized to something other than that returned by Load-

Component (), was passed

See Also
TPinInfoSink, CreateInstance ()

CMU/SEI-2005-TN-O01 71

Example
TPinConiponent *PinSimpleClock;

TPinlnfoSink *pin;

PinSimpleClock=LoadComponent ("SimpleClock dll");
pin = GetSinkPinlnfo(PinSimpleClock, 0);

RtPrintf("Naxne for sink pin 0 is %s\n',

pin->PinName);

72 OMU/SEi-2005-TN-OO1

GetSourcePinInfo

Synopsis

#include <PinInterface.h>
TPinInfoSource* GetSourcePinInfo

TPinComponent *Component;
unsigned int Num

Description

GetSourcePinInfo () is used to read or obtain the information about a specific source pin
for a component. Indexes to source pins start at 0.

Component non-null pointer for a component whose address

space was attached by LoadComponent ()

Num non-negative integer, which is the index into
TPinInfoSource for the source pin informa-

tion to be retrieved

Return Values

TPinInfoSource GetSourcePinInfo () will return a non-null
pointer to the specified source pin information

for a component.

Errors

The function will fail if

"* the source pin index is less than 0 or greater than or equal to the number of source pins
. supported by the component

"* an invalid pointer, or a pointer initialized to something other than that returned by Load-

Component (), was passed

See Also

TPinInfoSource, CreateInstance ()

CMU/SEI-2005-TN-O01 73

Example
TPinComponent *PinSimpleClock;

TPinlnfoSource *pin;

PinSimpleClock=LoadComponent ("SiinpleClock.dll");

pin = GetSourcePinlnfo(PinSiinpleClock, 0);

RtPrintf("Name for source pin 0 is %d\n",

pin->Pin~axne);

74 CMU/SEI-2005-TN-OO1

LoadComponent

Synopsis

#include <PinInterface. h>
TPinComponent LoadComponent

char *ComponentName

Description

LoadComponent () is used to dynamically load a component into the memory space of an
assembly controller. LoadComponent () uses operating-system-specific libraries to dynam-
ically load code modules (e.g., LoadLibrary () for the Win32 API) into the assembly's

address space. The name is conformant to the naming convention of the deployment platform
and conformant to the rules of the underlying native libraries.

ComponentName non-null pointer, non-empty string of the name

of the component to load into the assembly's

address space

Return Values

TPinComponent LoadComponent () will return a non-null
pointer to the loaded pin component.

NULL LoadComponent () will fail if it could not
load the pin component.

Errors

Passing a null string pointer or an empty string will result in a failure. A failure can occur if the
component specified in the parameter does not conform to the Pin component API. Also, a
failure can occur if the component name specified cannot be found by the native libraries or

the name does not conform to the conventions of those libraries.

See Also

UnloadComponent (), LoadLibrary () for the Win32 API.

CMU/SEI-2005-TN-001 75

Example
TPinComponent *PinSimpleClock;

if ((PinSiinpleClock=LoadComponent ("SimpleClock.dll"))==NULL)t
RtPrintf("Failed to Load SimpleClock\n");

ExitProcess (0)

else

RtPrintf("SimpleClock Load Successful\n");

76 CMU/SEI-2005-TN-OO1

SetMeasureExecut ionTime

Synopsis

#include <PinInterface.h>
BOOL SetMeasureExecutionTime (-

TComponentInstance *Instance,
unsigned int Reaction,

BOOL Measure

Description

SetMeasureExecutionTime () is used to enable or disable the emission of measure-
ment trace events by a component instance's reaction.

Instance non-null pointer returned by the CreateIn-
stance () of the component instance of the
reaction to be measured

Reaction non-negative integer, which is the index into
TReactionsInfo for the reaction for which

the measurement flag is to be set

Measure TRUE enables measurement of the component
instance's reaction; FALSE disables it.

Return Values

TRUE SetMeasureExecutionTime () was able

to set the measurement flag for the reaction.

FALSE SetMeasureExecutionTime () failed to

set the measurement flag for the reaction.

CMU/SEI-2005-TN-O01 77

Errors

The function will fail if

"* the reaction index is less than 0 or greater than or equal to the number of reactions sup-
ported by the component

" an invalid pointer, or a pointer initialized to something other than that returned by Load-
Component (), was passed

See Also

CreateInstance ()

Example

if (!SetMeasureExecutionTime (InstanceSimpleClockl, 0,TRUE))
{

RtPrintf
("failed to set reaction 0 measurement for SimpleClockl\n");

7

78 CMU/SEI-2OO5-TN-O01

SetReactionPriority

Synopsis

#include <PinInterface.h>
BOOL SetReactionPriority

TComponentInstance *Instance,
unsigned int Reaction,
int Priority

Description

SetReactionPriority () is used to set the priority of a component instance's reaction.
The value set overwrites the previous value and thereby permanently changes the reaction's
priority.

Instance non-null pointer returned by the CreateIn-

stance () of the component instance of the
reaction for which the priority is to be set

Reaction non-negative integer, which is the index into
TReactionsInfo for the reaction for which
the priority is to be set

Priority non-negative integer of the reaction's priority

Return Values

TRUE SetReactionPriority() was able to set
the priority for the reaction.

FALSE SetReactionPriority () failed to set the
priority for the reaction.

CMU/SEI-2005-TN-O01 79

Errors

The function will fail if

• the reaction index is less than 0 or greater than or equal to the number of reactions sup-

ported by the component

* an invalid pointer, or a pointer initialized to something other than that returned by Load-

Component (), was passed

• Priority is less than RTPRIORITY_MIN or greater than RTPRIORITYMAX

See Also
CreateInstance ()

Example

if (!SetReactionPriority

(InstanceSimpleClockl, 0 CLOCKPRIORITY))

RtPrintf
("failed to set reaction 0 measurement for SimpleClockl\n");

80 CMU/SEI-2005-TN-001

SetReactionQueueLength

Synopsis

#include <PinInterface.h>
BOOL SetReactionQueueLength

TComponentInstance *Instance,

unsigned int Reaction,

short QueueLength

Description

SetReact ionQueueLength () is used to set the queue length of the message queue for a

component instance's reaction. The new value overwrites the previous value and thereby per-
manently changes the queue's length.

Instance non-null pointer returned by the CreateIn-
stance () of the component instance of the
reaction for which the queue.size is to be set

Reaction non-negative integer which is the index into
TReactionsInfo for the reaction for which

the queue size is to be set

QueueLength non-negative integer of the queue size for hold-

ing messages for the reaction

Return Values

TRUE SetReactionQueueLength () was able to
set the queue size for the reaction.

FALSE SetReactionQueueLength () failed to set

the queue size for the reaction.

CMU/SEI-2005-TN-O01 81

Errors

The function will fail if

" the reaction index is less than 0 or greater than or equal to the number of reactions sup-

ported by the component

" an invalid pointer, or a pointer initialized to something other than that returned by Load-

Component (), was passed

" QueueLength is less than 0

See Also

CreateInstanceo

Example

if (!SetReactionQueueLength(InstanceSimpleClockl, 0, 1))

RtPrintf

("failed to set reaction 0 measurement for SimpleClockl\n");

82 CMU/SEI-2005-TN-001

SetReactionTimeOut

Synopsis

#include <PinInterface.h>
BOOL SetReactionTimeOut (

TComponentInstance * Instance,
unsigned int Reaction,

long Timeout

Description

SetReactionTimeOut () is used to set the timeout period of a component instance's reac-

tion. The value set overwrites the previous value and thereby permanently changes the reac-
tion's timeout.

Instance non-null pointer returned by the CreateIn-
stance () of the component instance of the
reaction for which the timeout is to be set

Reaction non-negative integer, which is the index into
TReactionsInfo for the reaction for which

the timeout is to be set

TimeOut non-negative integer indicating the reaction's

timeout that will generate a TIMEOUT message
should no other message type arrive

Return Values

TRUE SetReactionTimeOut () was able to set the
timeout for the reaction.

FALSE SetReactionTimeOut () failed to set the

timeout for the reaction.

CMU/SEI-2005-TN-O01 83

Errors

The function will fail if

"* the reaction index is less than 0 or greater than or equal to the number of reactions sup-
ported by the component

"* an invalid pointer, or a pointer initialized to something other than that returned by Load-
Component (), was passed

See Also

CreateInstance ()

Example

if (!SetReactionTimeOut (InstanceSimpleClockl, 0, clocklPeriod))
{

RtPrintf
("failed to set reaction 0 measurement for SimpleClockl\n");

8

84 CMU/SEI-2OO5-TN-O01

SourceAddS inkPin

Synopsis

#include <PinInterface.h>

BOOL SourceAddSinkPin (
TComponentInstance *Instance,

unsigned int SourcePin,

char *SinkComponentUniqueName,

unsigned int SinkPin

Description

SourceAddSinkPin () is used to dynamicallyestablish an interaction between two com-
ponents loaded by the controller. A sink pin is added to a source pins interaction list via the

supplied parameters.

Instance non-null pointer returned by the CreateIn-

stance () of the component instance of the

source pin to be connected

SourcePin index of the source pin to be connected

S inkComponentUniqueName non-null, non-empty character string (null-termi-

nated), which is unique to the component

instance of the sink pin to which the source pin is

to be connected

S inkPin index of the sink pin to which the source pin

should be connected

Return Values

TRUE SourceAddSinkPin () was able to connect

the designated source pin to the designated sink

pin.

FALSE SourceAddSinkPin () failed to connect the

designated source pin to the designated sink pin.

CMU/SEI-2005-TN-001 85

Errors

SourceAddSinkPin () will fail if

• the designated source pin or sink pin is invalid

* either instance of the components is not properly created with CreateInstance ()

• there is a memory allocation error

See Also

CreateInstance ()

Example

if (SourceAddSinkPin
(InstanceSimpleClockl, 0,
EMoveInstancel->UniqueName , 1) == FALSE) {

RtPrintf

("SourceAddSinkPin clockl.r0 ->> EMove.sl Failed \n");

I else {
RtPrintf

("clockl.rO Source ->> EMove.sl Sink OK!\n");

8

86 CMU/SEI-2OO5-TN-O01

StartInstance

Synopsis

#include <PinInterface.h>

BOOL StartInstance

TComponentInstance *Instance

Description
StartInstance () is used to start an instance of a component, which signifies that mes-

sages sent to the component instance will cause the associated reactions to be triggered. An

instance of a component that has not been started will not react to messages sent to sink pins

and reactions will not execute.

Instance non-null pointer returned by the CreateIn-

stance () of the component instance to be

started

Return Values
TRUE StartInstance () successfully started the

component instance.

FALSE StartInstance () failed to successfully start
the component instance.

Errors
StartInstance () will fail if the underlying system is unable to successfully create and

start a separate thread of control to manage reactions and messages for the component

instance.

See Also

CreateInstance), StopInstance ()

CMU/SEI-2005-TN-O01 87

Example
if (!StartInstance(InstanceSimpleClockl))

RtPrintf ('Startlnstance clocki Failed\n");

Ielse {
RtPrintf ("StartInstance clocki Ok!\n");

88 CMU/SEI-2005-TN-OO1

StartPinInterface

Synopsis

#include <PinInterface.h>
BOOL StartPinInterface (void);

Description

StartPinInterface () is called to initialize and start the Pin component runtime. This
function miust be called prior to using any other functions supported by the Pin runtime.

Return Values

TRUE StartPinInterface () successfully started

the Pin runtime.

FALSE StartPinInterface () failed to success-

fully start the Pin runtime.

Errors

StartPinInterface () will fail if it is unable to

"* allocate shared memory for the interprocess communication (needed for SendOut -

SourcePino)

"• link to the Pin directory server (needed for CreateInstance () and

SourceAddSinkPin ())

" load and initialize the dynamically linked IPC mechanism

See Also

StopPinInterface ()

Example

if (!StartPinInterface)) {
RtPrintf("Failed to start the Pin Interface\n");
ExitProcess (0);

else
RtPrintf("Pin Interface Successfully Started\n");

CMU/SEI-2005-TN-O01 89

StopInstance

Synopsis

#include <PinInterface. h>
BOOL StopInstance (

TComponentInstance * Instance

Description

StopInstance () is used to shut down an instance of a component. After being shut down,
the component instance will no longer react to messages sent to sink pins, and all reaction han-
dlers stop.

Instance non-null pointer returned by the CreateIn-
stance () of the component instance to be

stopped

Return Values

TRUE StopInstance () successfully stopped the

component instance.

FALSE StopInstance () failed to successfully stop

the component instance.

Errors

None

See Also

CreateInstance(), StartInstance()

Example

StopInstance (InstanceSimpleClockl);

90 CMU/SEI-2005-TN-001

StopPinInterface

Synopsis

#include <PinInterface.h>
BOOL StopPinInterface (void);

Description

StopPinInterface () is called to gracefully shut down the Pin component runtime. This
function should be the last one called prior to ending or exiting the controller.

Return Values

TRUE StopPinInterface () successfully stopped

the Pin runtime.

FALSE StopPinInterface () failed to successfully
stop the Pin runtime.

Errors

StopPinInterface () will fail if it is unable to successfully unload the IPC mechanism

and free previously allocated memory.

See Also

StartPinInterface ()

Example

if (!StopPinInterfaceo) {
RtPrintf("Failed to stop the Pin Interface\n");
ExitProcess (0);

else
RtPrintf ("Pin Interface Successfully Stopped\n");

CMU/SEI-2005-TN-001 91

UnloadComponent

Synopsis

#include <PinInterface.h>
BOOL UnloadComponent (

TPinComponent * PinComponent

Description

UnloadComponent () is used to dynamically remove a component from the controller's

memory space. Once a component is removed, all instances of the component will become

invalid; therefore, it is critical that all component instances be deleted using DeleteIn-

stance () prior to unloading the component.

Component non-null pointer for a component whose address

space was attached by LoadComponent ()

Return Values

TRUE UnloadComponent () successfully unloaded

the Pin component.

FALSE UnloadComponent () failed to successfully

unload the Pin component.

Errors

UnloadComponent () will fail if

"* the component was not previously loaded

"* the pointer to the component is invalid or was not returned by LoadComponent ()

"* the underlying system mechanism for unallocating the dynamic library of the component

fails (which in the case of Win32 is FreeLibrary ()

See Also

LoadComponent (FreeLibrary () for the Win32 API

92 CMU/SEI-2005-TN-O01

Example
.if (!UnloadComponent(PinSimpleClock)){

RtPrintf("Failed to Unload SimpleClock\n");

ExitProcess (0)

else
RtPrintf("SimpleClock Unload Successful\n"l);

CMU/SEI-2005-TN-OO1 93

WaitForNotifications

Synopsis

#include <PinInterface. h>
int WaitForNotifications

TControllerMsg *msg,
DWORD dwMilliseconds

Description

WaitForNoti f icat ions () is used by a controller to wait in a blocking or non-blocking

mode for (1) a user-defined message or (2) code and an optional character string from a com-

ponent instance. This function is useful in communicating exception conditions to the control-
ler, requiring controller attention (such as shutdown).

msg non-null pointer to a TControl lerMsg struc-
ture having user-defined semantics

dwMi l1i seconds length of time in milliseconds to wait for a notifi-
cation before returning with

NOTIFY_TIMEOUT. A timeout of
IPC_WAITFOREVER will cause

WaitForNotifications () to block until
such time that a notification message is sent to

the assembly controller.

Return Values

SUCCESS The notification message has been received suc-
cessfully.

CONTROLLERNOTFOUND Either the shared memory segment for message

passing has not been initialized (via
StartPinInterface ()), or the queue for
delivering messages to the controller has been
deleted.

INVALIDMSGPOINTER msg was passed a NULL pointer.

94 CMU/SEI-2005-TN-O01

CONTROLLERQUEUEERROR There was an error in processing the notification
queue on the receipt of a message.

NOTIFY_TIMEOUT The timeout specified in dwmi 11 i s e c onds
expired.

CONTROLLERUNKNOWNERROR The underlying IPC mechanism for delivering

messages failed for an unknown reason.

Errors

The errors generated by this function and the conditions that cause them are described above
under "Description."

See Also

NotifyController ()

Example

do{
retval=WaitForNotifications (&CMsg, 5000);

if (retval==SUCCESS) {
notifycount++;

RtPrintf("Received Notification From %s %d %s\n",

CMsg. Instance, CMsg.Code, CMsg.Message);
if (notifycount==l)
{

RtPrintf("Received 1st notify - terminating program\n");
break;

}
)
else if (retval==NOTIFY_TIMEOUT) {
RtPrintf ("Notification Timeout\n");

}

else
printf ("Notify Error\n");

I while((retval==NOTIFY_TIMEOUT) (retval==SUCCESS));

CMU/SEI-2005-TN-001 95

96 CMU/SEI-2005-TN-OO1

Appendix B Example

In this appendix, we present a significant fragment of a real (albeit toy) application in Pin. Our
objective is to provide the interested reader with an example of the use of the Pin API. The
logical structure of the application is first presented using the iconography and formal syntax
of CCL [Wallnau 03a]. Then, the generated cdde for a component implementation and assem-
bly controller are presented. The generated code is presented "as generated" with minimal
reformatting.

B.1 A Simple Assembly
In this section, we present the specification for a trivial application consisting of three compo-
nents: (1) one that takes input from the keyboard, (2) one that puts output to the display, and
(3) a component that maintains a buffer of length 1 of keyboard input.

The assembly is depicted in Figure 7.

CMU/SEI-2005-TN-O01 97

S Buffer1 oneltem 0(RTX rtx)

KeyboardComponent :kbd

S~rid (produce string s)

Buffer_1

put (consm stig)

OutputComponent:con

Figure 7: A Simple Assembly Specification

The behavior of the Buf fer_1 component is trivial; a state machine for the behavior of the

only reaction in Buf fer_1 is shown in Figure 8. The accepting state is 1i sten; in this state,
the reaction is prepared to accept stimulus on the put sink pin. When the buffer is full (in this
case, when there is one item in the buffer), the previously buffered item is forwarded to the

rid source pin.

98 CMU/SEI-2005-TN-001

threaded reaction buffReact (put, rid)

buffReact variables:
string item, temp• /buff Int buffdx

/bfdx 0 ;

Aput(item); [buffdx == O]I{ buffdx = 1; $putO;}

Aput(temp); [buffdx == 1]/ Arid(item);

•' ridding

$ridO;/ item = temp; $puto;

Figure 8: Statechart for Buffer_ 1 Reaction

The CCL specification for this simple application is provided below. Keywords are shown in
boldface.

component Buffer_1 () {
sink asynch put(consume string s);
source unicast rid (produce string s);

threaded react buffReact (put, rid) {
string item, temp;
int buffdx;

start -> listen {
action buffdx = 0;

I

listen -> listen {
trigger ^put (item);
guard buffdx == 0;
action {

buffdx = 1;

CMU/SEI-2005-TN-001 99

$put 0;
I

}

listen -> ridding {
trigger ^put(temp);
guard buffdx == 1;
action ^rid(item);

I

ridding -> listen {
trigger $rid(;
action {

item = temp;
$put(;

}
I

The CCL specification for the environment specifies which environment-provided services a
component may use. While services are implemented as components, some rules on what ser-
vices are allowed to do are more relaxed than those for components. The motivation for this
condition is beyond the scope of this report. The specification of the KeyboardComponent
and OutputComponent components are placeholders for more complex specifications and

are not included here.

environment RTX ()
{

singleton service KeyboardComponent () {
source unicast putKeyboard (produce string msg);
threaded react eternalTBD (putKeyboard) {

start -> putting { }
putting->putting { }

I
I

service OutputComponent ()
{

sink asynch putConsole (consume string msg);
threaded react eternal_TBD (putConsole) {

start -> writing { f
writing -> writing { }

I

}// RTX

100 CMU/SEI-2005-TN-001

The specification of the Bufferjl component is provided below. The correspondence between

the syntax of CCL reactions and the graphical (UML-like) statechart shown in Figure 8 is

straightforward.

The trickiest part of the specification lies in the instantiation of assemblies and environments.
First, we create an instance of the runtime environment (RTX), called env in the example.
Next, we create an instance of the assembly Buffered (called simpleBuf fered) and use
the services provided by env to satisfy the assumptions of the Buf fered assembly type.

// specify the assembly as a topology of component instances
Assembly Buffered () (RTX)
{

// what *we require of the environment is an "assumption"
assume {

RTX :KeyboardComponent keyb (;
RTX:OutputComponent outp();

I

Buffer_1 buff();

// here is the wiring
keyb :putKeyboard-> buff :put;
buff:rid-> outp:putConsole;

expose (1
I

// instantiate the RTX runtime environment
RTX env() {

RTX: KeyboardComponent kb);
RTX:OutputComponent cns();

I;

// instantiate the assembly in the env instance of RTX
Buffered simpleBuffered() {

Buffered:keyb = env:kb;
Buffered:outp = env:cns;

I;

B.2 Component Buffer_1 Implementation (Generated)
The CCL specifications in the previous section are sufficient to generate a working implemen-
tation of the Buf fer_l component and the simpleBuf fered assembly.

CMU/SEI-2005-TN-0O1 101

The code below is the generated code for the custom part of the]Buf fer_1 component. The
code for the reaction handler that implements the Buf fer_1 state machine is shown in bold-
face. The code is shown as generated, without additional formatting.

IIFunctions called from Buffer_1.c

#include <windows .h>

#include <rtapi .h>
#include "ComponentSpec .h"
#include "Printf.h"

#include "LibcSupport.h"

#include "ComponentFuncs .h"

#include "ComponentArgs .h"

typedef char *STRING;

typedef struct _COMPONENT_Buffer_1_ýVARS{
void *dummy; // always at least this member

ICOMPONENT_Buffer_1_VARS;

typedef struct _REACTIONý_buffReact:_VARS{

STRING temp;
STRING item;

int buffdx;
mnt CURRENT_STATE;

IREACTION_buffReact_ýVARS;

typedef struct __SOURCEPIN__ridPRODUCE_PARANS{
STRING s;

ISOURCEPINý_ridPRODUCE_-PAEANS;

typedef struct __SINKPIN~put.CONSUME_PARAMS
STRING s;

ISINK_PIN~putCONSUME_PAEANS;

typedef struct _INSTANCEDATA[

COMPONENTBuffer_1_ARGS *Buffer_1_args;
COMPONENT_Buffer_1_ýVARS *Buffer_1_vars;
REACTIONý_buffReact;_VARS *buffReact-vars;
SINKPIN~putCONSUMEPARAMS *put~params;

)INSTANCEDATA;

//--------------- ***REACTION DECLARATIONS FOR buffReact----

102 CMU/SEI-2005-TN-001

-------------- Timeout Handler for buffReact
long REACTION_buffReact_TIMEDEVENT_HANDLER(TReactions *Reac-
tion, TReason Reason, void *Data);

-------------- Reaction Main Event Handler for buffReact
BOOL REACTION_buffReact_PINGENERALEVENTHANDER(TReactions
*Reaction, TReason Reason, void *Data);

// -------------- Reaction Sink Pin Array Declaration for buf-
fReact----------------
unsigned int REACTIONbuffReact_SINKARRAY [
REACTION_buffReact_NUN_SINKS] = {Q /* put */};.

-------------- Reaction Source Pin Array Declaration for buf-
fReact----------------
unsigned int REACTIONbuffReact_SOURCEARRAY
REACTIONbuffReactNUMSOURCES] = {O /* rid */};

-------------- Reaction State Machine Info Array for buffRe-
act
static int REACTION_buffReactACCEPTINGSTATES [] =-{O, 1, 0);

static int REACTIONbuffReactACCEPTS_INTERACTION [3][1] = {
{o},
{0}};

//-------------- ***COMPONENT DECLARATIONS----------------

-------------- Index array for sink pins----------------
TPinInfoSink SinkPins [NUMSINKPINS] = {

"{ "(put)", "TEST"}
1;

-------------- Index array for source pins----------------
TPinInfoSource SourcePins [NUNSOURCE_PINS] = {

{ "(rid)", ""}

CMUISEI-2005-TN-O01 103

1;

-------------- Reaction array for component---------------
TReactionsInfo ReactionInfo[1] = {

{REACTION_buffReactNUMSOURCES,//number of source pins
REACTIONbuffReact_NUNSINKS,// number of sink pins
REACTIONbuffReactSOURCEARRAY,//ordered array of source

pin numbers
REACTION_buffReact_SINK_ARRAY, //ordered array of sink pin

numbers
DEFAULTQUEUESIZE,
DEFAULT_PRIORITY,
IPC_WAITFOREVER,// default timeout
FALSE, // default measurement flag
REACTIONbuffReact_PINGENERALEVENTHANDER, // for pin

and timed events
REACTIONbuffReactTIMEDEVENT_HANDLER// for UML timed

events
I

I;

-------------- Component Info Struct---------------
TComponentInfo ComponentInfo = {

"Buffer_1",
NUNSOURCEPINS,
NUN_SINKPINS,
NUNREACTIONS};

/-------------- Life Cycle Operations----------------

-------------- Create Component----------------------
BOOL CreateComponentInstance (void **Data, void *State, unsigned
int SizeOfState)
{

if (Data==NULL) {
return (FALSE);

I
*Data = NULL;
if (State != NULL) {

*Data = RtAllocateLockedMemory(sizeof (INSTANCEDATA

((INSTANCEDATA*)*Data)->Buffer_largs = RtAllocate-
LockedMemory(SizeOfState);

Rtjnemcpy(((INSTANCEDATA *)*Data)->Buffer_l_args, State,
SizeOfState);

104 CMU/SEI-2005-TN-001

((INSTANCE_DATA *)*Data)->Buffer_1_vars = RtAllocate-
LockedMemory(sizeof (COMPONENT_Buffer_1_VARS));

--- now allocate static variables for each reaction ---

((INSTANCEDATA *)*Data)->buffReactvars = RtAllocate-
LockedMemory(sizeof (REACTIONbuffReact_VARS));

((INSTANCE_DATA *)*Data)->buffReact_vars->CURRENT_STATE =

0;

// now allocate space for the consume parameters of
source pins ---

// --- now allocate space for the consume parameters of
sink pins ---

((INSTANCEDATA *)*Data)->putparams = RtAllocateLocked-
Memory(sizeof (SINKPIN-put_CONSUME_PARAMS));

-- initialize component local variables if necessary -

--- initialize reaction local variables if necessary -

return (TRUE);
}

-------------- Delete Component-----------------------
BOOL DeleteComponentInstance(void **Data)
{

if (Data==NULL) {
return(FALSE);

}
else {

// free component-level resources-------------------

RtFreeLockedMemory(((INSTANCEDATA *)*Data)-
>Buffer_l_args);

RtFreeLockedMemory(((INSTANCEDATA *)*Data)-
>Buffer_1_vars);

CMU/SEI-2005-TN-O01 105

--- free component-level resources-------------------

RtFreeLockedMemory(((INSTANCEDATA *)*Data)-
>buffReactvars);

// --- free source pin having consume parameters--------

// --- and now sink pins having consume parameters------

RtFreeLockedMemory(((INSTANCE_DATA *)*Data)->putparams

RtFreeLockedMemory(*Data);
return (TRUE);

}

-------------- Reaction Initializers-----------------------
void ReactionInitialize(TReactions *Reaction, int ReactionIn-
dex) {

I/ nothing, for now
}

//-------------- Reaction Terminator
void ReactionTerminating(TReactions *Reaction, int ReactionIn-
dex) {

II nothing, for now
}

-------------- Functions for Reaction buffReact-------------

long REACTIONbuffReactTIMED_EVENT_HANDLER(TReactions *Reac-
tion, TReason Reason, void *Data)
{

II not currently used
return (0);

}

.-------------- Reaction Main Event Handler for buffReact
BOOL REACTION_buffReactPINGENERALEVENTHANDER(TReactions
*Reaction, TReason Reason, void *Data)
{

// pre-defined variables...

106 CMU/SEI-2005-TN-001

IPC_MSG MessageOut;
int __marshDx;
char *__marshString;
INSTANCEDATA *p;
int CURRENT_STATE;

int cmd;
TCommonMsg *msg;
IPC_MSG *MessageIn;

II user-defined variables...

/------------------- declare component or service state
variables----------

// ------------------- declare reaction state variables
STRNG- uffea-c-t-

STRING buffReacttemp;
STRING buffReact-item;

int buffReactbuffdx;

if (Reason == TIMEOUT) { return (TRUE); } II TBD

if (Reason == TMR) { return (TRUE); I II TBD

II Reason == PINMSG

msg = (TCommonMsg *)Data;
MessageIn = msg->MessageIn;
cmd = msg->cmd;
p = Reaction->Instance->InstanceData;
CURRENTSTATE p->buffReact_vars->CURRENTSTATE;

buffReacttemp = p->buffReact_vars->temp;
buffReactitem = p->buffReact_vars->item;
buffReactbuffdx = p->buffReactvars->buffdx;

if (CURRENTSTATE == 0) {

II START->listen transition action:
buffReactbuffdx = 0
// no listen entry action
CURRENT_STATE = 1;

CMU/SEI-2OO5-TN-O01 107

I----------------state machine for buffReact----------------

do (
switch(CURRENTSTATE)(
case 1: // listen

// no listen exit action
if (cmd == 0) (

// listen->listen guard
if (buffReact-buffdx == 0){

IUnmiarshall params for listen->listen
__MarshDx = 0;
//--- STRING (char *

buffReact_item = RtkllocateLockedMemory(
strlen((char *) &Messagein->data[__MarshDx]) + 1);I

Rt~strcpy(buffReact_item, (char *) &Messageln-
>datal__MarshDxJ);

m-arshDx += strlen((char *)&Messageln-
>data[__MarshDx]) + 1;

IIlisten->listen action:

buffReact__buffdx = 1;

// called on an asynchronous pin -- no data to
be returned to caller-

IIno listen entry action

CURENDT-STATE = 1;
p->buffReact-vars->CURRENT_STATE = CURRENT_STATE;
p->buffReact_vars->temp = buffReact__temp;
p->buffReact_vars->item = buffReact-item;
p->buffReact_vars->buffdx = buffReact-buffdx;

IIlisten->ridding guard
else if (buffReact-buffdx == 1){

IUnmiarshall params for listen->ridding
-MarshDx = 0;
I--- STRING (char *

108 OMU/SEI-2005-TN-001

buffReacttemp = RtAllocateLockedMemory(
strlen((char *) &MessageIn->data[_marshDx]) + 1);

Rtstrcpy(buffReact_temp, (char *) &Messageln-
>data [marshDx]);

__marshDx += strlen((char *) &MessageIn-
>data[__MarshDx]) + 1;

//.listen->ridding action:

------------------ Marshall each actual param on
interaction in ridoutboundParams----------------

__-arshDx = 0;

I.----- string (char) * s ------
___marshString = buffReact_item;
Rtstrcpy(&MessageOut.data[___marshDx],

__marshString);
__marshDx += Rtstrlen (_marshString) + 1;

------------------ Call asynchronous IPC mecha-
nism ----------------

if (ISendOutSourcePin(
Reaction, 0, &MessageOut, (short)

(sizeof(MessageOut.data)), IPC_WAITFOREVER /* TBD property */))
{

NotifyContoller(Reaction->Instance,
CONTROLLERUNKNOWNERROR, "error in SendOutSourcePin");

return(FALSE);
}

I--

II no ridding entry action

CURRENTSTATE = 2;
}
else {

II throw it away--no satisfied guard
}

break;
case 2: // ridding

II no ridding exit action
------------------ Retrieve callback data from rid

into local state--------

I --

CMU/SEI-2005-TN-OO1 109

/I ridding->listen action:
(

buffReact-item = buffReacttemp;

// called on an asynchronous pin -- no data to be
returned to caller --

// no listen entry action

CURRENT_STATE = 1;
p->buffReact_vars->CURRENTSTATE = CURRENTSTATE;
p->buffReactvars->temp = buffReacttemp;
p->buffReact_vars->item = buffReact_item;
p->buffReact_vars->buffdx = buffReactbuffdx;

break;
default:

NotifyContoller(Reaction->Instance,
CONTROLLERUNKNOWNERROR, "Unrecognized state");

return(FALSE);

I while (IREACTIONbuffReactACCEPTING_STATESI CURRENTSTATE

return (TRUE);

I

B.3 Controller Implementation (Generated)
The code shown below appears as generated, with the exception that some extraneous empty
lines have been removed. The correspondence between the generated code and the assembly

life cycle depicted in Figure 4 are obvious from the generated comments.

// simpleBuffered.c
#include "simpleBuffered.h"
#include "PinInterface.h"
#include "PinDirectoryServer.h"
#include "Printf.h"
#include "LibcSupport.h"

// the include files for any parameterized components/services
#include "../KeyboardComponent/ComponentArgs.h"
#include "../Buffer i/ComponentArgs.h"

110 CMU/SEI-2005-TN-0O01

#include ". ./OutputComponent/ComponentArgs .h

void _cdecl main(int argc, char **argv, char **envp)

TPinComponent*factories 313;
TComponentlnstance*instances [3];
HANDLE ThreadHandle;
INT Priority;
TControllerMsg CMsg;
int retVal;

COMPONENT-KeyboardComponent_ARGS KeyboardComponent_args;
COMPONENT_Buffer_1_ARGS Buffer_largs;
COMPONENTOutputComponentARGS OutputComponent--args;

//start up pin interface...

if (!StartPinlnterfaceo){
RtPrintf("Failed to start the Pin Interface\n");
ExitProcess(O);

IIload components used in this assembly...

factories [0] = LoadComponent ("KeyboardComponent. dll");
if (factories[0] == NULL) {

RtPrintf ("Failed to Load KeyboardComponent\n");
ExitProcess (0)

else{
RtPrintf ("KeyboardComponent Load Successful\n");

factories [1] = LoadComponent ("Buffer_1 .dll");
if (factories[1] == NULL) {

RtPrintf ("Failed to Load Bufferj\n");
ExitProcess (0)

else{
RtPrintf ("Buffer_1 Load Successful\n");

factories [2] =LoadComponent ("OutputComponent.dll");
if (factories[2]1 == NULL) (1

RtPrintf ("Failed to Load OutputComponent\n");
ExitP~rocess(0);

CMU/SEI-2005-TN-OO111

else{
RtPrintf ("OutputComponent Load Successful\n");

IIinstantiate components and services used in the assembly

if ((instances[O] = Createlnstance(factories[OJ, "keyb"
&KeyboardComponent~args, sizeof (KeyboardComponent_args)))1
NULL) {(

RtPrintf("keyb instantiated\n");
Ielse {
RtPrintf("keyb FAILED TO BE instantiated\n");

if ((instances[1] = Createlnstanc6(factories [1], "buff",
&Buffer_l~args, sizeof (Bufferj1args)) =NULL)

RtPrintf ("buff instant iated\n");
Ielse (
RtPrintf("buff FAILED TO BE instantiated\n");

if ((instances[2] = Createlnstance(factories[212, "outp",
&OutputComponent~args, sizeof (OutputComponent-args))
NULL) {

RtPrintf("outp instantiated\n");
I else {

RtPrintf("outp FAILED TO BE instantiated\n");

IIinitialize properties of reactions

//set properties of reaction eternal_TBD of instance keyb
//set properties of reaction buffReact of instance buff
//set properties of reaction eternalTBD of instance outp

IIconfigure (or initialize) each component/service instance

if (Configurelnstance(instancesllO]) == FALSE){
RtPrintf("Configure keyb FAILED\n");

if (ConfigureInstance (instances [1]) == FALSE){
RtPrintf ("Configure buff FAILED\n");

112 CMU/SEI-2005-TN-OO1

if (Configurelnstance(instances[2]) == FALSE)
RtPrintf('Configure outp FAILED\n");

Ifwire the assembly together

if (!(instances[O]) && (instances[l]) && (instancesll2])))

RtPrintf("Not all instances created -- Skipped Wir-
ing\n");

I/should clean-up and exit?

else{
if (SourceAddSinkPin(instances[O], 0, instances[l]-

>UniqueName, 0) ==FALSE) {
RtPrintf (I"SourceAddSinkPin keyb:putKeyboard ->

buff :put Failed\n");

if (SourceAddSinkPin(instances[l], 0, instances[2]-
>UniqueName, 0) == FALSE) {

RtPrintf ("SourceAddSinkPin buff:rid -> outp:putConsole
Failed\n");

ThreadHandle = GetCurrentThreado;
Priority = RtGetThreadPriority (ThreadHandle);
RtSetThreadPriority (ThreadHandle, RTPRIORITY_MAX);
RtSetThreadTimeQuantum (ThreadHandle, 0);
RtPrintf("'Thread Priority is %d\nlI, RtGetThreadPrior-

ity(ThreadHandle));

//.start component instances

StartInstance (instances [1])

IIstart service instances

StartInstance (instances [0])
StartInstance (instances [2])

IIstart clock instances (last to start)

IIwait for asembly to be terminated...

CMU/SEI-2005-TN-OO1 113

retVal = WaitForNotifications (&CMsg, IPC_WAITFOREVER);
switch(retVal) I

case SUCCESS:
break;

case NOTIFYTIMEOUT:
break;

default:'// some kind of error occurred
RtPrintf("Error: %s : %s\n", CMsg.Instance, CMsg.Mes-

sage);
break;

IIshutdown clock instances (first to stop)

sI hutdown service instances
StopInstance (instances [Oi)
StopInstance (instances [2]);

IIshutdown component instances

StopInstance (instances [1])
IIrestore the assembly (main) priority to prior value (see

.above)

RtSetThreadPriority(ThreadHandle, Priority);

/1destroy component and service instances
if (instances[O]) Deletelnstance(instances [0]);
if (instances [1]) Deletelnstance(instances [1]);
if (instances[2]) Deletelnstance(instances[2]);

IIunload components used in this assembly...
if(!UnloadComponent(factories [0])) {

RtPrintf ("Failed to unload KeyboardComponent\n');

if(!UnloadComponent(factories [1])){
RtPrintf("Failed to unload BufferjI\n");

if(!UnloadComponent(factories[212)) {
RtPrintf ("Failed to unload OutputComponent\n");

IIshutdown pin interface
if (!IStopPinlnterface o){

RtPrintf("Failed to stop the Pin Interface\n");

ExitProcess (0)

114 CMU/SEI-2005-TN-OO1

References

[Bachmann 00] Bachmann, F.; Bass, L.; Buhman, C.; Comella-Dorda, S.; Long,
F.; Robert, J.; Seacord, R.; & Wallnau, K. Volume II: Technical

Concepts of Component-Based Software Engineering, 2nd Edi-
tion (CMU/SEI-2000-TR-008, ADA379930). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
2000. http://www.sei.cmu.edu/publications/documents

/00.reports/00tr008.html

[Bass 05] Bass, L.; Ivers, J.; Klein, M.; & Merson, P. Reasoning Frame-
works (CMU/SEI-2005-TR-007). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports

/05tr007.html

[Hissam 04a] Hissam, S.; & Klein, M. A Model Problem for an Open Robotics

Controller (CMU/SEI-2004-TN-030). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2004.

http://www.sei.cmu.edu/publicationsldocuments/04.reports

/04tn030.html

CMU/SEI-2005-TN-O01 115

[Ivers 02] Ivers, J.; Sinha, N.; & Wallnau, K. A Basis for Composition Lan-

guage CL (CMU/SEI-2002-TN-026, ADA407797). Pittsburgh,

PA: Software Engineering Institute, Carnegie Mellon University,

2002. http://www.sei.cmu.edu/publications/documents

/02.reports/02tn026.html

[Plakosh 99] Plakosh, D.; Smith, D.; & Wallnau, K. Builder's Guide for Water-

Beans Components (CMU/SEI-99-TR-024, ADA373154). Pitts-

burgh, PA: Software Engineering Institute, Carnegie Mellon

University, 1999. http://www.sei.cmu.edu/publications
/documents/99.reports/99trO24/99trO24abstract.html

[Szyperski 02] Szyperski, C.; Gruntz, D.; & Murer, S. Component Software:

Beyond Object-Oriented Programming, Second Edition. Boston,

MA: Addison-Wesley, 2002.

[Wallnau 03a] Wallnau, K. & Ivers, J. Snapshot of CCL: A Language for Pre-

dictable Assembly (CMU/SEI-2003-TN-025, ADA418453).

Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon

University, 2003. http://www.sei.cmu.edu/publications
/documents/03.reports/03tn025.html

[Wallnau 03b] Wallnau, K. Volume III: A Technology for Predictable Assembly

from Certifiable Components (PA CC) (CMU/SEI-2003-TR-009,

ADA413574). Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2003. http://www.sei.cmu.edu

/publications/documents/03.reports/03trOO9.html

[Ward 00] Ward-Dutton, N. Containers: "A Sign Components are Growing

Up." Application Development Trends 7, 1 (January 2000): 41-

44,46.

116 CMU/SEI-2005-TN-O01

REPORT DOCUMENTATION PAGE Fornm Approved
I OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 2005 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Pin Component Technology (V1.0) and Its C Interface FA8721-05-C-0003
6. AUTHOR(S)

Scott Hissam, James Ivers, Daniel Plakosh, Kurt C. Wallnau
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER

Camegie Mellon University CMU/SEI-2005-TN-001
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

HQ ESC/XPK AGENCY REPORT NUMBER

5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABIlUTY STATEMENT 12b DISTRIBUTION CODE
Unclassif ied/Un limited, DTIC, NTIS

13. ABSTRACT (maximum 200 words)

Pin is a basic, simple component technology suitable for building embedded software applications. Pin
implements the container idiom for software components. Containers provide a prefabricated "shell" in which
custom code executes and through which all interactions between custom code and its external environment
are mediated. Pin is a component technology for pure assembly-systems are assembled by selecting
components and connecting their interfaces (which are composed of communication channels called pins).

This report describes the main concepts of Pin and documents the C-language interface to Pin V1.0.
14. SUBJECT TERMS 15. NUMBER OF PAGES

component technology, component model, containers, runtime 126
environment, prediction-enabled component technology, embedded 16. PRICE CODE

systems, application programming interface
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED OF ABSTRACT UL
UNCLASSIFIED

N9SN 7540-01-280-5500 Standard Form 298 (Rev. 2.89)
Prm.soId by ANSI SMi. Z39-18
298-102

